DWE Leading Open Source Middleware

Consortium

Mastering JOnAS ClassLoaders

JONAS Team (Guillaume Sauthier)

Copyright © OW2 Consortium 2011

Creative Commons

Table of Contents

1. BasiCS Of Classloadingvveinieiiiiii e e e 1
L1 ClasShoaeruiiiiiiie i 1
R O == o PP 1

O T o 1 o 1

0 1 - PSPPI 1

L3, CLASSPATH ot 2
30 =0T 15 1 =0 I 0 = o L= (S 2

1.3.2. EXIENSIONS 10BOEYcocvviiiiiiii e e e 2

1.3.3. SYSEM L0A0EY ...cveecii e 2

2. ClassLoading iN JONASoiiiiii e e e 3
2.1, JONAS INENAIS (OSGI) .vuuevvneiiieeiiee et e et e e e e e e e e e e e e e e eaens 3
2.1.1. Modular AppliCation SEIVEYieviieiiiieiie e e 3

2.1.2. OSGIi™ ClassLoadingeeeeuiieiieeiie e e e e e e e eaen 3

P = 0T (o] == o PP 6

2.3, C00E ShAING ..eevn e 7
231 EXIiSting BUNAIEScoeiiiciicce e e 7

2.3.2. 08 FIlES e 7

2.4, JAVA EE MOUUIES ... e 8
241 OVEIVIBIW ittt ettt e et e e et e e et e e e e era s 8

2.4.2. Java 2 Delegation MOdeloovviiiiiiiiii 10

2.4.3. WED APPLICALIONSeeeiiii e e e e 10

24.4. Ears, EjbJars and RarSoevviiiiii i 11

G @) g o8 = o) o X 12
3.1. Isolating Java EE modules With filterscooovvieiii i, 12
3.1.1. ClassLoader FIteringocvuuiiiiiii e e 12

3.1.2. FIEriNG USAgE ..vueee i e e e e e e e eeen 14

3.2. Inverting Java2 delegation model for WEbappccvvvvvvviiiiiii e, 14

3.3. Publishing System PackagesScceuueieiiiiii e e e e e e e e 15
3.3.1. SyStem PaCkagesucvvviiii e 15

3.3.2. BOOt DEEQALIONcvviciii e 16

R 1o 1o P 17
4.1. Web Console: Classloader MONItOrNGccuuueviueeiiieiiiieeiieeriieeeie e e eeieeeanaeens 17
T TR @ S I B = [£ 17

4.1.2. Java EE HI€rarChiesoviiiiiiiiis e 18

ST 1T 20
5.1. AbStract Factory Patterncc.uiiiiniiiii e 20
L300 I R 4 o g o= 111 £ P 20

oI 2o 11 o] o PP 20

5.2. ClassCastEXCEPONuiiiiiiiiie e e 21
LA N =4 o g o= 11 £ o 21

B.2.2. SOIULIONS ..cvviieeiii e e 21

ST A o o (I 1S3 PP 21

Y 2 T o A B L= T=o = 4 o] N 21

List of Figures

2.1
2.2.
2.3.
2.4.
2.5.
2.6.
3.1
4.1

JONAS mModular arChitECLUIEiiiiii e
BUNAIE ClaSS SPBCEvuiiiiieei et e e e e e e e e e e e et e e e ean s
OSGi Classdoading AlQOrithmiii e e e
JONAS OSGI™ MOUUIES ...ttt e e e et e e et e e e e aaa s
Sharing Code With OSGI BUNAIEScovuniiii e
Java EE Modules Classloading Hi€rarchycccoooioiiiiiiii e
L T 001 11 o

L0 S T I 1 T-"o 01

List of Tables

5.1. Boot Delegation Patterns Examples

List of Examples

2.1. Default set of bNd iNSLUCHIONSccuviiiiii e 7
3.1. Default system-wide filtering configurationcc.oviiiiiiiiii i 14
3.2. Per-module configuration SAMPIEo.uiiiiiiii e 14
3.3. Invertion of Java2 Delegation Strategy (jonas-web.Xml)cooevviiiiiiiiiii i 15

Chapter 1. Basics of ClassLoading
1.1. ClassLoader

1.1.1.

1.1.2.

Usage
A Cl assLoader knows how to load resources (class, images, ...).

Where the Cl assLoader locates the resources is an implementation detail: it could search on a
network drive, alocal file, inajar or in adirectory, ...

Additionaly, for Java classes, a O assLoader supports the class definition process. turning a
byt e[] intoad ass<T> instance.

Warning
Beware of ClassLoaders, behind the interface, how they works can differ alot from an
implementation to another.

Ex: an OSGI™ Classloader has no automatic delegation to parent loader, unlike an
URLCl assLoader.

Understanding the execution chain requires a knowledge of the ClassLoader's internals

Delegation

ClassL oaders delegate loading of resources to other ClassL oaders, under certains circumstances and
conditions.

Note

aClassusingj ava. | ang. Stri ng must usethe same T ass<St ri ng> definition
to be interoperable with other Class (potentially loaded by different loaders).

Delegation is essential !

In order to delegate resource loading to other loaders, a ClassLoader defines some relationships. At
least, a ClassLoader have a parent loader (Only system loader do not have a parent : it is the root
loader). It may (or may not) also have other links to other loaders. Theses links may (or may not) be
used to delegate loading of aresource (or aclass) to another loader.

Warning
The way the ClassL oader uses theses links to other loaders, including link to the parent
loader are depending on the ClassL oader implementation.

1.2. Class

ClassisaJavaaobject (O ass<T>), itisuniquely identifiedwithaSt ri ng, G assLoader couple.
The St ri ng being the Class name, and the Cl assLoader being the loader which has effectively
loaded the Class (Not necessarily the one used primarily to load the class!).

Note

Gl assLoader. | oadd ass(St ring) mayreturnaC ass<T> definitionthat was
not loaded by the Cl assLoader itself but that comes from an "ancestor".

Basics of ClassLoading

That meansthat Cl assCast Except i on may happen between classes having the same name !
Note

Two classes with the same name but loaded by 2 different loaders are incompatibles :
they don't have the same definition.

1.3. CLASSPATH

1.3.1.

1.3.2.

1.3.3.

Bootstrap
ClassLoader

Extensions
ClassLoader

System
ClassLoader

When aJava VM starts 3 loaders are created: <boot st r ap>, <ext ensi ons> and <syst enp.

System delegates to Extension, itself delegating to Boostrap, all using a parent first delegation model.

Bootstrap loader

The<boot st r ap> loader isthe primordial VM ClassLoader. It is responsible to load the core Java
libraries(rt . j ar,...) locatedin JAVA HOVE/ | i b/ *. j ar.

The loader has no parent and is implemented with native code.

Extensions loader

The <ext ensi ons> loader is the only child of <boot st rap>, it is responsible to load Java
extensions (security, ...) from JAVA HOME/ | i b/ ext/ *. j ar. The content of this loader can be
adapted using the java.ext.dirs system property. This property accepts acommaseparated list of paths,
al . j ar filesinthesesdirectorieswill be added in the <ext ensi on> loader.

This loader is implemented (at least when using Hotspot VM) with sun. mi sc. Launcher
$Ext d assLoader.

System loader

The <syst en> loader is the only child of the <ext ensi ons> loader, it contains the content
of the CLASSPATH environment variable. It is implemented using sun. mi sc. Launcher
$Appd assLoader (at least when using Hotsport VM).

Chapter 2. ClassLoading in JOnAS

2.1. JOnAS Internals (OSGiI)
2.1.1. Modular Application Server

JOnAS isamodular application server, it relies on OSGi ™ to provide the module layer.

Asaconsequence, JOnAS is simply an aggregation of Bundles (more or less): aright sized (no more,
no less) JOnA S assembly ispossible by just choosing theright set of bundles needed by the application.

Figure2.1. JOnAS modular architecture

2.1.2. OSGi™ ClassLoading
2.1.2.1. Bundle

An OSGIi™ Bundl e is the module unit, it contains classes and resources.It may also contain other
jar files (useful for privatizing resources).

Bundle's metadata are defined in META- | NF/ MANI FEST. MF. Theses metadata are providing
information that helpsto:

* ldentify uniquely the Bundle (Bundl e- Synbol i cNane + Bundl e- Ver si on)
» Defineswhat is published to the outside of the module
* Define module's boundaries

2.1.2.1.1. Bundle ClassPath

A Bundl e may also have access to resources provided by inner jar files. Theses jar files will form
the Bundle's ClassPath.

ClassLoading in JOnAS

2.1.2.1.2. Exporting Packages

Bundle's metadata may declare exported packages. That meansthat theses packages (and all contained
resources/classes) will be available for other Bundles to use (imported).

Theses packages have to be contained in the Bundl e.
2.1.2.1.3. Importing Packages

Bundle's metadata may also declaresimported packages. A wireis created for each imported package
that matches a corresponding exported package.

2.1.2.2. Class Space

A class space is a notion associated to a Bundl e: it represent all the resources accessibles from the
bundle. A Bundl e cannot access aresource outside of its class space.

The figure below show the Class space of Bundle A. This Bundle can access all resources from its
own classpath (the Bundl€'s content) plus all imported packages' resources.

Figure 2.2. Bundle Class Space

Bundle B

private private

public

Bundle A

Class Space for Bundle A

public
private

Bundle C
exported

2.1.2.3. Delegation

The OSGi ™ gpecification defines strict classloading rules. Theses rules are applied when aBundl e
is asked to load a class (or find aresource).

Note

Parent classloader is usualy the system Classdoader (true for JOnAS), but that may
change depending on the underlying OSGi ™ framework and its configuration.

This workflow may look complex, but it is well documented and have to be compared with
custom loader with unclear behavior (and unspecified delegation rules) ...

Thisisthe price to pay to avoid the well known “Classpath Hell” !

ClassLoading in JOnAS

Figure 2.3. OSGi Classloading Algorithm

javas

boot
delegation?

Delegate to yes
parent class loader

Delegate to yes
parent class loader

Delegate to ¥es .
wire's exporter

. Fallure
yes
¢ . (::) Success

3 imported?
ne

Search Reguired

4 bundles
Search bundle

3 elass path
' Search fragments

bundle class path

package
exported?

(il+]

dynamic
Import?

N

2.1.2.4. System Bundle

Delegate to
wire's exporter

The System Bundleis a"Wrapper" around the System loaders to make it looks like aBundl e: it has
a Bundle symbolic name (value: syst em bundl e), is always the first "installed" Bundle (and so

it'sID is0) and have export packages.

Wrapping the system ClassLoaders as a Bundle is important because other Bundles may imports
some packages that are only available in rt . jar (and other libraries provided in the System
Classloaders - <boot st r ap>, <ext ensi ons> and <syst en®). So for the standard package
resolution mechanism to work, a Bundl e representing the system was necessary.

The System Bundle exports some of the system packages: not all, only a selected subset (can be
configured). Thisis some kind of mask or filter allowing to hide some packages.

Hiding a package is then as ssimple as not exporting it from System Bundle (Ex : javax.transaction
because the VM provides an incomplete package).

ClassLoading in JOnAS

2.1.2.5. JOnAS
JONAS being built on top of OSGi ™, it's building blocks are OSGi ™ bundles. Each of them having

their own Bundl e C assLoader , exporting more or less of their content and importing packages
from other bundles.

Figure2.4. JOnAS OSGi™ M odules

d System ClassLoader (controlled access)
+ java.* (sub packages)
_+ bootdelegation packages (optional)
Jh controlled delegation ‘ to parent "
™ ™~
o &
& <]
T () (7]
& & v
& & #
s J’Q ’G‘ o
& 4 & o
£ § § o
@ S S
System
Exported Exported Exported Exported
Packages Packages Packages Packages
(from rt.jar)

The figure above shows a simplified view of JOnAS Classloading architecture. Each Bundle
correspond to a JOnAS module, green parts represents the subset of module's packages that are
exported to the environment. Each Bundle have wire to other Bundles for each resolved imported
package (not shown on the picture). All of theses |oaders have the System ClassL oader as parent (not
to be confound with System Bundle: the all-green modul e on the | eft). The usage of this parent loader
isvery controlled: only java.* packages (javalang, java.nio, ...) and package's patterns configured in
boot delegation are delegated to the parent loader (the two first steps in bundle del egation section).

2.2. Endorsed

Endorsed isasystem level (JVM) mechanism allowing to override the classes provided by the System
ClassLoaders of the VM (rt . j ar, ...).

Itistraditionally used in Java EE server to force usage of newer version of some packages/libraries.

Note

In JONAS, Apache Xerces, Apache Xaan, JAXP APIs plus RMI/1IOP APIs (CORBA)
areprovidedin${j onas. root}/1i b/ endorsed/ .

The endorsed mechanism is configurable through a system property: java.endorsed.dirs. the value

provides a list of directories (separator : ": ' or '; ' depending on the host Operating System). All jars
in theses directories will beinserted beforer t . j ar (thusgaining priority at load-time).

o Important
!

- Jars in endorsed directories are inserted in the <boot st r ap> loader (the very first
loader created by the IVM).

They are not auto-magicaly visible to applications.

This is because their visibility is constrained to the list of system exported packages
(System Bundle).

ClassLoading in JOnAS

2.3. Code Sharing

2.3.1.

2.3.2.

Sharing additional resourcesis done by adding bundlesto JOnAS. That'sit!

Figure 2.5. Sharing Code with OSGi Bundles

System ClassLoader (controlled access) B
+ java.* (sub packages)
+ bootdelegation packages (optional)
T T controlled ¢ delegation ¢ to parent T T
Y A P ': o ™
o & 5 ¢ &
& o g & o ¥
L 's. L < ‘a? 3" #ré
o s = 4, @
@ &9 o b 4? 7] \ Sy
£ £ g S | o | & || €F
& & & FF | o | 8 9
;5{-, g S e 'Lc? © g 'Qé
~ ~ d
System Exported
Exported Exported Exported Exported Exported Packages
Packages Packages Packages Packages Packages (Full Content}
\J(fremriad) \ J J J \ J J

Existing Bundles

Existing Bundles have to be deployed using the usual JOnA'S deployment mechanisms:

» Deployment directory: Dropping the Bundle in the ${j onas. base}/ depl oy/ directory is
enough

¢ Command line: jonas admin add ${path-to}/users-bundle,jar

* Web console

Jar Files

Jar files (do not have OSGIi™ metadata in their manifest) cannot be deployed by Just dropping ajar
in${j onas. base}/ depl oy/ . They have to be turned into bundle first.

JOnAS offers afast, easy and efficient mechanism to perform that operation: Extension Loader .

This mechanism look for jar files in the |i b/ ext/ directories of ${j onas.root} and
${j onas. base}. Every jar file (extension: *. j ar) in these directorier will be transformed into a
Bundle (using aQute Bnd [http://www.agute.biz/Bnd/Bnd]).

Example 2.1. Default set of bnd instructions

Synbolic Nane is conputed fromsource jar filenane

A maven-like artifact nane is expected <artifactld>-<version>.jar (-version is optional)
<artifactld> maps to Synbolic Nane

<version> maps to bundle version (if missing 0.0.0 is used)

Bundl e- Synbol i cNane <artifactld>

Bundl e- Ver si on <versi on>

Inports all discovered required packages
Have them narked as optional to avoid startup resolution errors
I nport - Package *;resol ution: =optional

Export all the packages contained in the original jar
Export - Package *

Can | oad any non-inported package at runtine
Dynami cl nport - Package *

http://www.aqute.biz/Bnd/Bnd
http://www.aqute.biz/Bnd/Bnd

ClassLoading in JOnAS

Note

Thel i b/ ext/ directoriesare only traversed once: when JOnAS starts. Any update or
jar fileremoval will be ignored until next restart.

Note

Generated Bundles can befound in ${j onas. base}/ wor k/ ext - bundl es/

Once they have been generated they could be used as standard Bundles (placed in
depl oy/).

2.4. Java EE Modules

Java EE modules are not Bundles, so they not obey the same classloading rules. This section will
explain how works Java EE classloading in JOnAS.

2.4.1. Overview

Java EE modules can be represented in two groups: standalone modules and embed modules. The
classloading hierarchies are different from one case to another.

ClassLoading in JOnAS

Figure 2.6. Java EE M odules Classloading Hierar chy

standalona
rars

standalone
ajbjar

standalone
webapp

application
{rars)

..

Note

Visibility is from bottom to the top in this schema.
By default, a classloader follows the Java 2 delegation model: asking it's parent first. So any embed
WebApp can see the content of the embeds EjbJars, embeds libraries, embed Resource Adapters of
its containing Ear. And transitively, it can also access resources provided by standalone Resource

adapters. But it will not be able to see resources coming from sibling WebAppsand ApplicationClient,
neither from standal one EjbJars and WebA pps.

2.4.1.1. Standalone modules

Standalone modules means modules primarily deployed on JOnAS (artefact in depl oy/ for
example).

» Ears (Java EE Applications) are de facto standalone modules because they cannot be embed in
another Java EE module.

* EjbJarsand Web Applications are standalone module if deployed outside of an Ear.

» Rars (Resource Adapters) are standalone module if deployed outside of an Ear.

ClassLoading in JOnAS

Standalone Rars are specials because they don't have an isolated ClassL oader for each, this unique
loader is aso the parent of all other standalone modules.

It is necessary for them to share the same loader because Rars contains jars/resources that have to be
available to all Java EE deployed modules (thus be accessible in an ancestor of the Java EE loaders).

Note

As Standalone Resource Adapters (not in .ear) are sharing the same ClassL oader, if 2
resources overlaps, the one coming from the earliest deployed Rar is preferred.

Standalone Ears, EjbJars and WebApps are direct childs of this common ancestor: they can load
resources/classes from the standalone Rars.

2.4.1.2. Embed modules

2.4.2.

2.4.3.

Embed modules are all Java EE modules types that are available in Ears:
* EjbJars
* WebApps

* Resource Adapters

Java 2 Delegation Model

The Java2 delegation model is a delegation strategy where the parent loader is asked first, then
local sources are probed if resource was not found by parent. This ensure a maximum class space
consistence, ensuring a preference for shared sources over local sources.

This model is the default delegation model applied on all JVM provided Classloaders (System,
URLC asslLoader,...).

The Servlet specification states that web applications must run within an “inverted delegation model”.
In other words : local resources (V\EB- | NF/ cl asses/ + WEB- | NF/ | i b/) are preferred over
server's resources. Standal one Jetty/Tomcat runs apps with this model by default.

On the contrary, the Java EE specification states that the default model must be the normal delegation
model.

Web Applications

A WebApp loader can access resource from 3 main locations:
» The System ClassL oader

* VEB- | NF/ cl asses/ andVEB-I NF/ | i b/ *.j ar.

Note

All resources relative to WEB- | NF/ ¢l asses/ will be available

Note

Only jar files(*. j ar) directly under WEB- | NF/ | i b/ areloaded, subdirectories (if
any) are not traversed.

For example, a. properti es filein WEB- | NF/ | i b/ will not be visible from the
ClassL oader.

10

ClassLoading in JOnAS

* Itsparent Classloader: if WebApp is standalone, its parent is the standalone Rars |oader, otherwise
itisthe EjbJars + Libraries.

2.4.3.1. Delegation Strategy
A WebApp ClasslL oader uses the following strategy to load resources/class:

1. Ask to System ClassL oader.

Note

Prior to JOnAS 5.1, this step is always executed.

For JOnAs 5.1, this access is disabled if the execution VM is superior to Java 6,
enabled otherwise (Javab).

Post JONAS 5.2, this access is always disabled (disregarding the Java version)
2. If the delegation model property istrue (default):
a. Ask to the parent.
b. Asktolocal sources.
3. Else (java2 delegation model = false):
a Ask tolocal sources.

b. Ask to parent.

2.4.4. Ears, EjbJars and Rars

The ClassLoaders for non Web Applications are behaving like traditional ClassLoaders:. they use the
standard Java2 delegation strategy (parent first).

11

Chapter 3. Configuration

3.1. Isolating Java EE modules with filters

3.1.1. ClassLoader Filtering

ClasslLoaders of Java EE modules can be filtered with JOnAS. Filtering acts as a runtime package
mask hiding a specified set of patterns.

When a resource/class is trying to be loaded by a Cl assLoader, this one first checks if the
fully qualified resource name (ie: includes the package name) matches a provided pattern. If so, it
cut the execution flow and throw a Cl assnot FoundExcepti on or return nul I when a class
(respectively aresource) matches one of the patterns.

ClassLoader Filtering is a fine grained approach to filtering, based on pattern matching (ex:
org.springframework.* excludes all resources from the org.springframework packages). It is
implemented as an intermediate (passthrough) Cl assLoader seating between 2 other ClassL oaders
(ex: Web -> (filtering) -> EjbJars).

Two levels of filters are available: system-wide (shared by all Java EE modules in the system) and
per-module (only impacts a given module).

! I mportant
Before version 5.1.6, JOnAS only offered system wide filtering configuration
It is globally deactivatable using the System property jonas-disable-filtering-class-loader=true
! I mportant

Acts as a barrier between Java EE modules and the application server: isolate modules
from resources also availablein JOnAS.

12

Configuration

Figure 3.1. Filter's position

system filters

standalone
rars

module ﬂ
standalone application
webapp [rars)

ejbjars + libs

standalone

ejbjar

3.1.1.1. XML Configuration

System wide configuration is applied to the parent loader of applications (the loader of
standalone Rars). It is configurable in the ${ j onas. base}/ conf/ cl assl oader - def aul t -
filtering.xm file

13

Configuration

Example 3.1. Default system-wide filtering configur ation

<?xm version="1.0" encodi ng="UTF-8"?>
<cl ass-loader-filtering xm ns="http://org.ow2.jonas.!|ib.|oader.mappi ng">

<I--
List of filters used to exclude packages/resources that are used
internally by the Application Server but that will not be available
to applications.
An enpty list will not hide any packages to the applications
This list is used both to hide resources and cl asses to applications.
-->

<default-filters>
<I--
Filters are using regexp as specified at
http://java. sun. conlj2se/1.5. 0/ docs/ api/javall ang/
String. ht m #mat ches(j ava. | ang. Stri ng)
-->
<filter-name>org. apache. conmons. di gester.*</filter-name>
<filter-name>org.springfranework.*</filter-nanme>
</default-filters>
</class-loader-filtering>

The per-module configuration is available for:
» Webapp (either standalone or embed) with WEB- | NF/ cl assl oader-filtering. xm
* Ear with META- | NF/ cl assl oader-filtering.xnl

The configuration style is not applicable for RARs or EjbJars Standalone since they directly uses the
system filters. When embed in Ear, they usesfilters defined in the application.

Example 3.2. Per-module configuration sample

<?xm version="1.0" encodi ng="UTF-8"?>
<cl ass-1oader-filtering xm ns="http://org.ow2.jonas.|ib.|oader.mappi ng">
<filters>
<filter-name>org.apache. xn .*</filter-name>
</[filters>
</cl ass-loader-filtering>

3.1.2. Filtering Usage

ClassL oader filtering should be used when JOnASS provideslibraries are conflicting with application's
embed libraries. That will make sure that application libraries are used instead of application server's
ones.

Warning

Make sure that all needed packages are filtered: some libraries aggregates multiple
packages.

Ex : Apache Xalan includes org.apache.xalan + org.apache.xml + org.apache.xpath in
Xal an. j ar

3.2. Inverting Java2 delegation model for
webapp

As stated in the section related to Java2 delegation model, Java EE and Servlet specifications dictates
different default delegation strategy. In order to limit behavioral changes when migrating from a
standal one web container to JOnAS, aswitch isavailable through the VEB- | NF/ j onas- web. xm :

* Itonly appliesto web application (included or not in Ear)
» Search ordering isinverted if delegation is disabled

14

Configuration

Example 3.3. Invertion of Java2 Delegation Strategy (jonas-web.xml)

<?xm version="1.0" encodi ng="1|SO 8859-1"?>
<j onas- web- app xm ns="http://ww. obj ect web. or g/j onas/ ns"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
Xsi : schenaLocat i on="http://wwv. obj ect web. or g/ j onas/ ns
http://jonas. ow2. or g/ ns/j onas- web- app_4_0. xsd" >
<l-- true : the context uses a classloader using the Java 2 del egati on nodel (default)
false : the class |oader |ooks inside the web application first, before asking parent
cl ass | oader -->
<j ava2- del egat i on- nodel >f al se</j ava2- del egat i on- nodel >
</ j onas- web- app>

Note

Avoid usingj ava2- del egati on- nodel : usefiltering instead.

Filtering permits to touch only the required bits whileinvertion apply for the whole web
application.

What happen when alib needs inversion and another do not ?

Invertion is more lenient than filtering, preference over exclusion : can till use server's
classes where filtering defines area barrier.

3.3. Publishing system packages

3.3.1.

JOnAS comes with a predefined list of system packages [http://websvn.ow2.org/filedetails.php?
repname=j onas& path=%2Fj onas¥%2Fbranches¥%2Fjonas 5 2%2Fjonas¥2Fmodul es%2Ftools

%2Fl aunchers%2Ffelix-launcher%2Fsrc%2Fmai n%2Fresources¥%2Forg%2Fow2%2Fjonas
%2Flauncher%2Ffelix%2Fjavase-profiles.properties] adapted to the runtime JVM version. By
default, the System Bundle will exports all of the listed packages.

For some uses cases (endorsed addition, ...), it may be useful to add some packages to this list. This
isindeed configurable in JOnAS.

JOnAS 5.1 configuration is provided as a full felix configuration file. This file is located in
the I i b/ boot strap/felix-Iauncher.jar file (See org/ow2/jonas/launcher/felix/default-
config.properties).

Configuration customizers have to get afull copy of that file and perform manual changesin it.

When satisfied, JOnAS must be started with a system property named felix.configuration.file pointing
to the modified file's path.

For JOnAS 5.2 (and superior), most of the Felix/OSGi configuration is accessible in conf / osgi /
folder. It is commented, readable and comprehensive. Most useful properties are easily accessible.

System Packages

The list of System Bundle exported package is expressed using 2 properties
org.osgi.framework.system.packages and org.osgi.framework.system.packages.extra.

The format of theses properties is a comma separated list of package names (ex
org. osgi . franmewor k; ver si on=1. 5. 0), just like a standard Export - Package OSGi ™
header.

Note

Wildcards are not accepted in this list, all packages (even sub-packages) have to be
declared individually.

15

http://websvn.ow2.org/filedetails.php?repname=jonas&path=%2Fjonas%2Fbranches%2Fjonas_5_2%2Fjonas%2Fmodules%2Ftools%2Flaunchers%2Ffelix-launcher%2Fsrc%2Fmain%2Fresources%2Forg%2Fow2%2Fjonas%2Flauncher%2Ffelix%2Fjavase-profiles.properties
http://websvn.ow2.org/filedetails.php?repname=jonas&path=%2Fjonas%2Fbranches%2Fjonas_5_2%2Fjonas%2Fmodules%2Ftools%2Flaunchers%2Ffelix-launcher%2Fsrc%2Fmain%2Fresources%2Forg%2Fow2%2Fjonas%2Flauncher%2Ffelix%2Fjavase-profiles.properties
http://websvn.ow2.org/filedetails.php?repname=jonas&path=%2Fjonas%2Fbranches%2Fjonas_5_2%2Fjonas%2Fmodules%2Ftools%2Flaunchers%2Ffelix-launcher%2Fsrc%2Fmain%2Fresources%2Forg%2Fow2%2Fjonas%2Flauncher%2Ffelix%2Fjavase-profiles.properties
http://websvn.ow2.org/filedetails.php?repname=jonas&path=%2Fjonas%2Fbranches%2Fjonas_5_2%2Fjonas%2Fmodules%2Ftools%2Flaunchers%2Ffelix-launcher%2Fsrc%2Fmain%2Fresources%2Forg%2Fow2%2Fjonas%2Flauncher%2Ffelix%2Fjavase-profiles.properties
http://websvn.ow2.org/filedetails.php?repname=jonas&path=%2Fjonas%2Fbranches%2Fjonas_5_2%2Fjonas%2Fmodules%2Ftools%2Flaunchers%2Ffelix-launcher%2Fsrc%2Fmain%2Fresources%2Forg%2Fow2%2Fjonas%2Flauncher%2Ffelix%2Fjavase-profiles.properties
org/ow2/jonas/launcher/felix/default-config.properties
org/ow2/jonas/launcher/felix/default-config.properties

Configuration

3.3.2.

Theses packages will then be importable from other Bundlesinstalled on the OSGi™ gateway.

Tweaking thelist of system packages may be used to hide or change some attributes of packages, that
let a possibility for other bundles to provide a different version of the exported packages, and leave
the choice to the bundle consummer.

That configuration freedom has to be used with care: org.osgi.framework.system.packages property
has to be used only when it's needed to remove/modify a package in the system default exported list.

Note

javax.transaction + javax.transaction.xaare not exported by the System Bundlein JOnAS
because the VM misses some of the classes in theses packages

The System extra packages list has to be used when bundles/applications need an additional package
from alibrary placed in endorsed directories (or in any of the place seached for System ClassLoader:
extensions + CLASSPATH).

Note

Resolve package constraint resol ution error with the addition of anew exported packages
declaration to the system.

Boot Delegation

Boot delegation packagesis one of the OSGi joker for known non-modular VM packages. They have
priority over all other way of classloading.

It is configurable through the org.osgi.framework.bootdelegation property. The value is a comma
separated list of packages patterns. wildcard (* ") is only accepted at the end of the pattern.

Note

com sun. i mage* : accept classes from com.sun.image and sub-packages

I mportant
!

Theses packages do NOT appear in system's exported packages (may lead to unexpected
resolution error)

Touching this property should be avoided as much as possible, because it breaks modularity. As per
the osgi delegation strategy, bootdel egation have the top most priority in loading, so no overridde is
possible: a Bundle cannot use a different version (even if it import it and the import was resolved) !

In clear, it should be used as last resort: when adding packages to System Bundle did not worked or
when aclassin abundle performs some dynamic class |oading and makes the assumption that its own
ClassLoader can load the wanted Class. There are multiple condition for this to happen:

» Thewanted classis unknown at build time (otherwise a proper import would have been generated)

» The wanted class is in the system ClassLoader (otherwise servicing this class from the System
ClassL oader does not make sense)

» The bundle do not import the resource's package

* You cannot change this Bundle :-(

16

Chapter 4. Tooling

4.1. Web Console: Classloader monitoring

4.1.1.

The "Classloader monitoring" module in the jonasAdmin web console aims to help diagnosis of
classloading issues.

It provides agraphical view of Java EE classloading hierarchies and givesadirect way to interact with
ClassL oaders and see their behaviors.

OSGi Diagnosis

The web console offers a search feature that helps to know from which Bundle a class/package/
resource comes from.It displays the wired consumer Bundle(s).

It helpsto seeif a Bundleiswired to the right package provider.

17

Tooling

Figure4.1. OSGi Diagnosis

<title>Search for agiven classin all the OSGi bundles</title>

e

Mozilla Firefox
“ htep:/flocalh...jonasAdmin/z ¥ | REIAED
= ** http://localhost:9000/jonasAdmin/#

¥ ClassLoader Monitoring

[OSGi/Application Server ClassLoader Monitoring] Java EE modules ClassLoz

Choice:

Search entry: javax.ejb.SessionContext (s) Class

Mame Versio | Description

n
B javax.ejb 3.0,0 [Default]
exporting-bundle Bundle[48] org.ow2.jonas.osgi.jav:
m importing-bundles

importing-bundle Bundle[18] org.ow2.bundles.owz-
importing-bundle Bundle[19] org.owZ. bundles. owz-L
importing-bundle Bundle[54] org.ow2.jonas.services
importing-bundle Bundle[53] org.ow2.easybeans.ap
importing-bundle Bundle[67] org.ow2.jonas. deployrr
importing-bundle Bundle[74] org.ow2.jonas. security
importing-bundle Bundle[76] org.ow2.jonas.ejb-cont
PR R [B Al 7T e

¥ & ClassLoader Monitoring

4.1.2. Java EE Hierarchies

The web console also offers a Java EE ClassL oading hierarchy view. It is dedicated to a selected Java
EE module and show the ancestry of Classloader.

18

Tooling

Filtering patterns associated to ClassL oaders are also displayed.

Thisview permitsto test resource loading from the selected ClassL oader. That helpsto seeif the class
comes from the expected source.

19

Chapter 5. Tips
5.1. Abstract Factory Pattern

5.1.1.

5.1.2.

Error pattern

In an eye blink, suspect all static Fact ory. newl nst ance() methods.

The AbstractFactory pattern isawell known and quite used pattern. There is an abstract Factory class
with animplemented static method (newl nst ance()). Thismethodisin chargeof finding asuitable

implementation that will be returned to the consumer. JAXP API are using this pattern.
Usually this method performs the following operations:

1. Try to find the name of aclass (the concrete Factory) to load.

Usually, the search is done in some dedicated property files, system properties, default hardcoded

vaue, ...
2. Try to load the discovered class using a guessed |oader.
Used loaders depends on the code but usually involves (ordre is not significant here):
» Thread Context ClassLoader
* ClassLoader of the Factory
» System ClassL oader
» A given ClassLoader (could be passed as parameter with some luck)
3. Creates an instance of the loaded Class (if one could be |oaded)

! I mportant
Thiskind of code make the assumption that they can load any class.

Thisis not true (even completely wrong) in amodular world

Solutions

The environment has to be adapted to what is expected by the code:
 Give an appropriate ClassL oader (if possible)
» Set aThread Context ClassLoader to a ClassL oader that will be able to load the Class.

Note

Do not forget to reset to old ClassLoader after thecall (t ry/final | y)!

Cl assLoader expected = ...
Cl assLoader ol d = Thread. current Thread(). get Cont ext Cl assLoader () ;
Thr ead. current Thr ead. set Cont ext Cl assLoader (expect ed) ;
try {
/1 Do whatever you want in this block
Factory factory = Factory. new nstance();
} finally {
/'l Reset the TCCL
Thr ead. current Thr ead. set Cont ext C assLoader (ol d);

20

Tips

5.2. ClassCastException

5.2.1. Error pattern

5.2.2.

Conflicting libraries are found in JONAS and in an application.

Delegation mechanism, and the logic used to find an implementation, produces an instance from a
Class incompatible with expected type.

For example, the loaded type comes from the System ClassLoader but the expected type comes from

the webapp ClassL oader.

Solutions

Use the stacktrace to extract faulty classnames: that's the main suspects.

Use the console to find from where theses classes/packages are |oaded.

Display Right/Left ClassLoader of the assignation to discover the ClassL oader sources. -

* Interesting values: Expected type/loader, Returned type/loader, TCCL

» Similar to the info the console provides

Filter the package(s) to force resolution in your application codebase.

Usually go back to first bullet until no more Exceptions .

5.3. Coderules!

To understand what happen, knowing the ClassLoader hierarchies helps a lot but is not aways

sufficent.

Reading the source code gives the final clues explaining the observed behavior.

Note

People do alot of things in Java with class loading (some even weird)

5.4. Boot Delegation

Format of boot delegation pattern is somehow sensible. Here are examples and explanations.

» Nowildcard (ex: com.sun.xml): Only matches classes directly in the given package

* Dot and wildcard (ex: com.sun.xml.*): Only matches classes in sub packages (direct content does

not match)

* Only wildcard (ex: com.sun.xmi*): Matchesboth direct package and sub packages. But also matches
for packages sharing the same chars at the beginning of their names.

Tableb5.1. Boot Delegation Patter ns Examples

Pattern / Match ? com.sun.xml.Parser ? |com.sun.xml.mine.MingRenssurexmlaa.AaPar ser ?
com.sun.xml YES NO NO

com.sun.xml.* NO YES NO

com.sun.xmil* YES YES YES

21

	Mastering JOnAS ClassLoaders
	Table of Contents
	Chapter 1. Basics of ClassLoading
	1.1. ClassLoader
	1.1.1. Usage
	1.1.2. Delegation

	1.2. Class
	1.3. CLASSPATH
	1.3.1. Bootstrap loader
	1.3.2. Extensions loader
	1.3.3. System loader

	Chapter 2. ClassLoading in JOnAS
	2.1. JOnAS Internals (OSGi)
	2.1.1. Modular Application Server
	2.1.2. OSGi™ ClassLoading
	2.1.2.1. Bundle
	2.1.2.1.1. Bundle ClassPath
	2.1.2.1.2. Exporting Packages
	2.1.2.1.3. Importing Packages

	2.1.2.2. Class Space
	2.1.2.3. Delegation
	2.1.2.4. System Bundle
	2.1.2.5. JOnAS

	2.2. Endorsed
	2.3. Code Sharing
	2.3.1. Existing Bundles
	2.3.2. Jar Files

	2.4. Java EE Modules
	2.4.1. Overview
	2.4.1.1. Standalone modules
	2.4.1.2. Embed modules

	2.4.2. Java 2 Delegation Model
	2.4.3. Web Applications
	2.4.3.1. Delegation Strategy

	2.4.4. Ears, EjbJars and Rars

	Chapter 3. Configuration
	3.1. Isolating Java EE modules with filters
	3.1.1. ClassLoader Filtering
	3.1.1.1. XML Configuration

	3.1.2. Filtering Usage

	3.2. Inverting Java2 delegation model for webapp
	3.3. Publishing system packages
	3.3.1. System Packages
	3.3.2. Boot Delegation

	Chapter 4. Tooling
	4.1. Web Console: Classloader monitoring
	4.1.1. OSGi Diagnosis
	4.1.2. Java EE Hierarchies

	Chapter 5. Tips
	5.1. Abstract Factory Pattern
	5.1.1. Error pattern
	5.1.2. Solutions

	5.2. ClassCastException
	5.2.1. Error pattern
	5.2.2. Solutions

	5.3. Code rules !
	5.4. Boot Delegation

