
Mastering JOnAS ClassLoaders

JOnAS Team (Guillaume Sauthier)

- -

Copyright © OW2 Consortium 2011

Creative Commons

ii

Table of Contents
1. Basics of ClassLoading .. 1

1.1. ClassLoader ... 1
1.1.1. Usage ... 1
1.1.2. Delegation ... 1

1.2. Class .. 1
1.3. CLASSPATH ... 2

1.3.1. Bootstrap loader ... 2
1.3.2. Extensions loader ... 2
1.3.3. System loader .. 2

2. ClassLoading in JOnAS .. 3
2.1. JOnAS Internals (OSGi) ... 3

2.1.1. Modular Application Server ... 3
2.1.2. OSGi™ ClassLoading ... 3

2.2. Endorsed ... 6
2.3. Code Sharing ... 7

2.3.1. Existing Bundles .. 7
2.3.2. Jar Files .. 7

2.4. Java EE Modules .. 8
2.4.1. Overview .. 8
2.4.2. Java 2 Delegation Model .. 10
2.4.3. Web Applications ... 10
2.4.4. Ears, EjbJars and Rars ... 11

3. Configuration .. 12
3.1. Isolating Java EE modules with filters ... 12

3.1.1. ClassLoader Filtering .. 12
3.1.2. Filtering Usage ... 14

3.2. Inverting Java2 delegation model for webapp ... 14
3.3. Publishing system packages .. 15

3.3.1. System Packages .. 15
3.3.2. Boot Delegation ... 16

4. Tooling .. 17
4.1. Web Console: Classloader monitoring ... 17

4.1.1. OSGi Diagnosis .. 17
4.1.2. Java EE Hierarchies .. 18

5. Tips .. 20
5.1. Abstract Factory Pattern ... 20

5.1.1. Error pattern .. 20
5.1.2. Solutions ... 20

5.2. ClassCastException .. 21
5.2.1. Error pattern .. 21
5.2.2. Solutions ... 21

5.3. Code rules ! ... 21
5.4. Boot Delegation .. 21

iii

List of Figures
2.1. JOnAS modular architecture ... 3
2.2. Bundle Class Space ... 4
2.3. OSGi Classloading Algorithm ... 5
2.4. JOnAS OSGi™ Modules ... 6
2.5. Sharing Code with OSGi Bundles .. 7
2.6. Java EE Modules Classloading Hierarchy .. 9
3.1. Filter's position ... 13
4.1. OSGi Diagnosis .. 18

iv

List of Tables
5.1. Boot Delegation Patterns Examples .. 21

v

List of Examples
2.1. Default set of bnd instructions ... 7
3.1. Default system-wide filtering configuration .. 14
3.2. Per-module configuration sample ... 14
3.3. Invertion of Java2 Delegation Strategy (jonas-web.xml) ... 15

1

Chapter 1. Basics of ClassLoading
1.1. ClassLoader

1.1.1. Usage
A ClassLoader knows how to load resources (class, images, ...).

Where the ClassLoader locates the resources is an implementation detail: it could search on a
network drive, a local file, in a jar or in a directory, ...

Additionaly, for Java classes, a ClassLoader supports the class definition process: turning a
byte[] into a Class<T> instance.

Warning

Beware of ClassLoaders, behind the interface, how they works can differ a lot from an
implementation to another.

Ex: an OSGi™ Classloader has no automatic delegation to parent loader, unlike an
URLClassLoader.

Understanding the execution chain requires a knowledge of the ClassLoader's internals

1.1.2. Delegation
ClassLoaders delegate loading of resources to other ClassLoaders, under certains circumstances and
conditions.

Note

a Class using java.lang.String must use the same Class<String> definition
to be interoperable with other Class (potentially loaded by different loaders).

Delegation is essential !

In order to delegate resource loading to other loaders, a ClassLoader defines some relationships. At
least, a ClassLoader have a parent loader (Only system loader do not have a parent : it is the root
loader). It may (or may not) also have other links to other loaders. Theses links may (or may not) be
used to delegate loading of a resource (or a class) to another loader.

Warning

The way the ClassLoader uses theses links to other loaders, including link to the parent
loader are depending on the ClassLoader implementation.

1.2. Class
Class is a Java object (Class<T>), it is uniquely identified with a String, ClassLoader couple.
The String being the Class' name, and the ClassLoader being the loader which has effectively
loaded the Class (Not necessarily the one used primarily to load the class !).

Note

ClassLoader.loadClass(String) may return a Class<T> definition that was
not loaded by the ClassLoader itself but that comes from an "ancestor".

Basics of ClassLoading

2

That means that ClassCastException may happen between classes having the same name !

Note

Two classes with the same name but loaded by 2 different loaders are incompatibles :
they don't have the same definition.

1.3. CLASSPATH

When a Java VM starts 3 loaders are created: <bootstrap>, <extensions> and <system>.

System delegates to Extension, itself delegating to Boostrap, all using a parent first delegation model.

1.3.1. Bootstrap loader
The <bootstrap> loader is the primordial VM ClassLoader. It is responsible to load the core Java
libraries (rt.jar, ...) located in JAVA_HOME/lib/*.jar.

The loader has no parent and is implemented with native code.

1.3.2. Extensions loader
The <extensions> loader is the only child of <bootstrap>, it is responsible to load Java
extensions (security, ...) from JAVA_HOME/lib/ext/*.jar. The content of this loader can be
adapted using the java.ext.dirs system property. This property accepts a comma separated list of paths,
all .jar files in theses directories will be added in the <extension> loader.

This loader is implemented (at least when using Hotspot VM) with sun.misc.Launcher
$ExtClassLoader.

1.3.3. System loader
The <system> loader is the only child of the <extensions> loader, it contains the content
of the CLASSPATH environment variable. It is implemented using sun.misc.Launcher
$AppClassLoader (at least when using Hotsport VM).

3

Chapter 2. ClassLoading in JOnAS

2.1. JOnAS Internals (OSGi)

2.1.1. Modular Application Server
JOnAS is a modular application server, it relies on OSGi™ to provide the module layer.

As a consequence, JOnAS is simply an aggregation of Bundles (more or less): a right sized (no more,
no less) JOnAS assembly is possible by just choosing the right set of bundles needed by the application.

Figure 2.1. JOnAS modular architecture

2.1.2. OSGi™ ClassLoading

2.1.2.1. Bundle

An OSGi™ Bundle is the module unit, it contains classes and resources.It may also contain other
jar files (useful for privatizing resources).

Bundle's metadata are defined in META-INF/MANIFEST.MF. Theses metadata are providing
information that helps to:

• Identify uniquely the Bundle (Bundle-SymbolicName + Bundle-Version)

• Defines what is published to the outside of the module

• Define module's boundaries

2.1.2.1.1. Bundle ClassPath

A Bundle may also have access to resources provided by inner jar files. Theses jar files will form
the Bundle's ClassPath.

ClassLoading in JOnAS

4

2.1.2.1.2. Exporting Packages

Bundle's metadata may declare exported packages. That means that theses packages (and all contained
resources/classes) will be available for other Bundles to use (imported).

Theses packages have to be contained in the Bundle.

2.1.2.1.3. Importing Packages

Bundle's metadata may also declares imported packages. A wire is created for each imported package
that matches a corresponding exported package.

2.1.2.2. Class Space

A class space is a notion associated to a Bundle: it represent all the resources accessibles from the
bundle. A Bundle cannot access a resource outside of its class space.

The figure below show the Class space of Bundle A. This Bundle can access all resources from its
own classpath (the Bundle's content) plus all imported packages' resources.

Figure 2.2. Bundle Class Space

2.1.2.3. Delegation

The OSGi™ specification defines strict classloading rules. Theses rules are applied when a Bundle
is asked to load a class (or find a resource).

Note

Parent classloader is usually the system Classloader (true for JOnAS), but that may
change depending on the underlying OSGi™ framework and its configuration.

This workflow may look complex, but it is well documented and have to be compared with
custom loader with unclear behavior (and unspecified delegation rules) ...

This is the price to pay to avoid the well known “Classpath Hell” !

ClassLoading in JOnAS

5

Figure 2.3. OSGi Classloading Algorithm

2.1.2.4. System Bundle

The System Bundle is a "Wrapper" around the System loaders to make it looks like a Bundle: it has
a Bundle symbolic name (value: system.bundle), is always the first "installed" Bundle (and so
it's ID is 0) and have export packages.

Wrapping the system ClassLoaders as a Bundle is important because other Bundles may imports
some packages that are only available in rt.jar (and other libraries provided in the System
Classloaders - <bootstrap>, <extensions> and <system>). So for the standard package
resolution mechanism to work, a Bundle representing the system was necessary.

The System Bundle exports some of the system packages: not all, only a selected subset (can be
configured). This is some kind of mask or filter allowing to hide some packages.

Hiding a package is then as simple as not exporting it from System Bundle (Ex : javax.transaction
because the JVM provides an incomplete package).

ClassLoading in JOnAS

6

2.1.2.5. JOnAS

JOnAS being built on top of OSGi™, it's building blocks are OSGi™ bundles. Each of them having
their own Bundle ClassLoader, exporting more or less of their content and importing packages
from other bundles.

Figure 2.4. JOnAS OSGi™ Modules

The figure above shows a simplified view of JOnAS Classloading architecture. Each Bundle
correspond to a JOnAS' module, green parts represents the subset of module's packages that are
exported to the environment. Each Bundle have wire to other Bundles for each resolved imported
package (not shown on the picture). All of theses loaders have the System ClassLoader as parent (not
to be confound with System Bundle: the all-green module on the left). The usage of this parent loader
is very controlled: only java.* packages (java.lang, java.nio, ...) and package's patterns configured in
boot delegation are delegated to the parent loader (the two first steps in bundle delegation section).

2.2. Endorsed
Endorsed is a system level (JVM) mechanism allowing to override the classes provided by the System
ClassLoaders of the JVM (rt.jar, ...).

It is traditionally used in Java EE server to force usage of newer version of some packages/libraries.

Note

In JOnAS, Apache Xerces, Apache Xalan, JAXP APIs plus RMI/IIOP APIs (CORBA)
are provided in ${jonas.root}/lib/endorsed/.

The endorsed mechanism is configurable through a system property: java.endorsed.dirs. the value
provides a list of directories (separator : ':' or ';' depending on the host Operating System). All jars
in theses directories will be inserted before rt.jar (thus gaining priority at load-time).

Important

Jars in endorsed directories are inserted in the <bootstrap> loader (the very first
loader created by the JVM).

They are not auto-magicaly visible to applications.

This is because their visibility is constrained to the list of system exported packages
(System Bundle).

ClassLoading in JOnAS

7

2.3. Code Sharing
Sharing additional resources is done by adding bundles to JOnAS. That's it!

Figure 2.5. Sharing Code with OSGi Bundles

2.3.1. Existing Bundles
Existing Bundles have to be deployed using the usual JOnAS deployment mechanisms:

• Deployment directory: Dropping the Bundle in the ${jonas.base}/deploy/ directory is
enough

• Command line: jonas admin add ${path-to}/users-bundle.jar

• Web console

2.3.2. Jar Files
Jar files (do not have OSGi™ metadata in their manifest) cannot be deployed by Just dropping a jar
in ${jonas.base}/deploy/. They have to be turned into bundle first.

JOnAS offers a fast, easy and efficient mechanism to perform that operation: Extension Loader.

This mechanism look for jar files in the lib/ext/ directories of ${jonas.root} and
${jonas.base}. Every jar file (extension: *.jar) in these directorier will be transformed into a
Bundle (using aQute Bnd [http://www.aqute.biz/Bnd/Bnd]).

Example 2.1. Default set of bnd instructions

Symbolic Name is computed from source jar filename
A maven-like artifact name is expected <artifactId>-<version>.jar (-version is optional)
<artifactId> maps to Symbolic Name
<version> maps to bundle version (if missing 0.0.0 is used)
Bundle-SymbolicName <artifactId>
Bundle-Version <version>

Imports all discovered required packages
Have them marked as optional to avoid startup resolution errors
Import-Package *;resolution:=optional

Export all the packages contained in the original jar
Export-Package *

Can load any non-imported package at runtime
DynamicImport-Package *

http://www.aqute.biz/Bnd/Bnd
http://www.aqute.biz/Bnd/Bnd

ClassLoading in JOnAS

8

Note

The lib/ext/ directories are only traversed once: when JOnAS starts. Any update or
jar file removal will be ignored until next restart.

Note

Generated Bundles can be found in ${jonas.base}/work/ext-bundles/

Once they have been generated they could be used as standard Bundles (placed in
deploy/).

2.4. Java EE Modules
Java EE modules are not Bundles, so they not obey the same classloading rules. This section will
explain how works Java EE classloading in JOnAS.

2.4.1. Overview

Java EE modules can be represented in two groups: standalone modules and embed modules. The
classloading hierarchies are different from one case to another.

ClassLoading in JOnAS

9

Figure 2.6. Java EE Modules Classloading Hierarchy

Note

Visibility is from bottom to the top in this schema.

By default, a classloader follows the Java 2 delegation model: asking it's parent first. So any embed
WebApp can see the content of the embeds EjbJars, embeds libraries, embed Resource Adapters of
its containing Ear. And transitively, it can also access resources provided by standalone Resource
adapters. But it will not be able to see resources coming from sibling WebApps and ApplicationClient,
neither from standalone EjbJars and WebApps.

2.4.1.1. Standalone modules

Standalone modules means modules primarily deployed on JOnAS (artefact in deploy/ for
example).

• Ears (Java EE Applications) are de facto standalone modules because they cannot be embed in
another Java EE module.

• EjbJars and Web Applications are standalone module if deployed outside of an Ear.

• Rars (Resource Adapters) are standalone module if deployed outside of an Ear.

ClassLoading in JOnAS

10

Standalone Rars are specials because they don't have an isolated ClassLoader for each, this unique
loader is also the parent of all other standalone modules.

It is necessary for them to share the same loader because Rars contains jars/resources that have to be
available to all Java EE deployed modules (thus be accessible in an ancestor of the Java EE loaders).

Note

As Standalone Resource Adapters (not in .ear) are sharing the same ClassLoader, if 2
resources overlaps, the one coming from the earliest deployed Rar is preferred.

Standalone Ears, EjbJars and WebApps are direct childs of this common ancestor: they can load
resources/classes from the standalone Rars.

2.4.1.2. Embed modules

Embed modules are all Java EE modules types that are available in Ears:

• EjbJars

• WebApps

• Resource Adapters

2.4.2. Java 2 Delegation Model
The Java2 delegation model is a delegation strategy where the parent loader is asked first, then
local sources are probed if resource was not found by parent. This ensure a maximum class space
consistence, ensuring a preference for shared sources over local sources.

This model is the default delegation model applied on all JVM provided ClassLoaders (System,
URLClassLoader, ...).

The Servlet specification states that web applications must run within an “inverted delegation model”.
In other words : local resources (WEB-INF/classes/ + WEB-INF/lib/) are preferred over
server's resources. Standalone Jetty/Tomcat runs apps with this model by default.

On the contrary, the Java EE specification states that the default model must be the normal delegation
model.

2.4.3. Web Applications
A WebApp loader can access resource from 3 main locations:

• The System ClassLoader

• WEB-INF/classes/ and WEB-INF/lib/*.jar.

Note

All resources relative to WEB-INF/classes/ will be available

Note

Only jar files (*.jar) directly under WEB-INF/lib/ are loaded, subdirectories (if
any) are not traversed.

For example, a .properties file in WEB-INF/lib/ will not be visible from the
ClassLoader.

ClassLoading in JOnAS

11

• Its parent Classloader: if WebApp is standalone, its parent is the standalone Rars loader, otherwise
it is the EjbJars + Libraries.

2.4.3.1. Delegation Strategy

A WebApp ClassLoader uses the following strategy to load resources/class:

1. Ask to System ClassLoader.

Note

Prior to JOnAS 5.1, this step is always executed.

For JOnAs 5.1, this access is disabled if the execution JVM is superior to Java 6,
enabled otherwise (Java 5).

Post JOnAS 5.2, this access is always disabled (disregarding the Java version)

2. If the delegation model property is true (default):

a. Ask to the parent.

b. Ask to local sources.

3. Else (java2 delegation model = false):

a. Ask to local sources.

b. Ask to parent.

2.4.4. Ears, EjbJars and Rars
The ClassLoaders for non Web Applications are behaving like traditional ClassLoaders: they use the
standard Java2 delegation strategy (parent first).

12

Chapter 3. Configuration

3.1. Isolating Java EE modules with filters

3.1.1. ClassLoader Filtering

ClassLoaders of Java EE modules can be filtered with JOnAS. Filtering acts as a runtime package
mask hiding a specified set of patterns.

When a resource/class is trying to be loaded by a ClassLoader, this one first checks if the
fully qualified resource name (ie: includes the package name) matches a provided pattern. If so, it
cut the execution flow and throw a ClassnotFoundException or return null when a class
(respectively a resource) matches one of the patterns.

ClassLoader Filtering is a fine grained approach to filtering, based on pattern matching (ex:
org.springframework.* excludes all resources from the org.springframework packages). It is
implemented as an intermediate (pass through) ClassLoader seating between 2 other ClassLoaders
(ex: Web -> (filtering) -> EjbJars).

Two levels of filters are available: system-wide (shared by all Java EE modules in the system) and
per-module (only impacts a given module).

Important

Before version 5.1.6, JOnAS only offered system wide filtering configuration

It is globally deactivatable using the System property jonas-disable-filtering-class-loader=true

Important

Acts as a barrier between Java EE modules and the application server: isolate modules
from resources also available in JOnAS.

Configuration

13

Figure 3.1. Filter's position

3.1.1.1. XML Configuration

System wide configuration is applied to the parent loader of applications (the loader of
standalone Rars). It is configurable in the ${jonas.base}/conf/classloader-default-
filtering.xml file.

Configuration

14

Example 3.1. Default system-wide filtering configuration

<?xml version="1.0" encoding="UTF-8"?>
<class-loader-filtering xmlns="http://org.ow2.jonas.lib.loader.mapping">

 <!--
 List of filters used to exclude packages/resources that are used
 internally by the Application Server but that will not be available
 to applications.
 An empty list will not hide any packages to the applications
 This list is used both to hide resources and classes to applications.
 -->
 <default-filters>
 <!--
 Filters are using regexp as specified at
 http://java.sun.com/j2se/1.5.0/docs/api/java/lang/
String.html#matches(java.lang.String)
 -->
 <filter-name>org.apache.commons.digester.*</filter-name>
 <filter-name>org.springframework.*</filter-name>
 </default-filters>
</class-loader-filtering>

The per-module configuration is available for:

• Webapp (either standalone or embed) with WEB-INF/classloader-filtering.xml

• Ear with META-INF/classloader-filtering.xml

The configuration style is not applicable for RARs or EjbJars Standalone since they directly uses the
system filters. When embed in Ear, they uses filters defined in the application.

Example 3.2. Per-module configuration sample

<?xml version="1.0" encoding="UTF-8"?>
<class-loader-filtering xmlns="http://org.ow2.jonas.lib.loader.mapping">
 <filters>
 <filter-name>org.apache.xml.*</filter-name>
 </filters>
</class-loader-filtering>

3.1.2. Filtering Usage
ClassLoader filtering should be used when JOnAS provides libraries are conflicting with application's
embed libraries. That will make sure that application libraries are used instead of application server's
ones.

Warning

Make sure that all needed packages are filtered: some libraries aggregates multiple
packages.

Ex : Apache Xalan includes org.apache.xalan + org.apache.xml + org.apache.xpath in
Xalan.jar

3.2. Inverting Java2 delegation model for
webapp

As stated in the section related to Java2 delegation model, Java EE and Servlet specifications dictates
different default delegation strategy. In order to limit behavioral changes when migrating from a
standalone web container to JOnAS, a switch is available through the WEB-INF/jonas-web.xml:

• It only applies to web application (included or not in Ear)

• Search ordering is inverted if delegation is disabled

Configuration

15

Example 3.3. Invertion of Java2 Delegation Strategy (jonas-web.xml)

<?xml version="1.0" encoding="ISO-8859-1"?>
<jonas-web-app xmlns="http://www.objectweb.org/jonas/ns"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.objectweb.org/jonas/ns
 http://jonas.ow2.org/ns/jonas-web-app_4_0.xsd">
 <!-- true : the context uses a classloader using the Java 2 delegation model (default)
 false : the class loader looks inside the web application first, before asking parent
 class loader -->
 <java2-delegation-model>false</java2-delegation-model>
</jonas-web-app>

Note

Avoid using java2-delegation-model: use filtering instead.

Filtering permits to touch only the required bits while invertion apply for the whole web
application.

What happen when a lib needs inversion and another do not ?

Invertion is more lenient than filtering, preference over exclusion : can still use server's
classes where filtering defines a real barrier.

3.3. Publishing system packages
JOnAS comes with a predefined list of system packages [http://websvn.ow2.org/filedetails.php?
repname=jonas&path=%2Fjonas%2Fbranches%2Fjonas_5_2%2Fjonas%2Fmodules%2Ftools
%2Flaunchers%2Ffelix-launcher%2Fsrc%2Fmain%2Fresources%2Forg%2Fow2%2Fjonas
%2Flauncher%2Ffelix%2Fjavase-profiles.properties] adapted to the runtime JVM version. By
default, the System Bundle will exports all of the listed packages.

For some uses cases (endorsed addition, ...), it may be useful to add some packages to this list. This
is indeed configurable in JOnAS.

JOnAS 5.1 configuration is provided as a full felix configuration file. This file is located in
the lib/bootstrap/felix-launcher.jar file (See org/ow2/jonas/launcher/felix/default-
config.properties).

Configuration customizers have to get a full copy of that file and perform manual changes in it.

When satisfied, JOnAS must be started with a system property named felix.configuration.file pointing
to the modified file's path.

For JOnAS 5.2 (and superior), most of the Felix/OSGi configuration is accessible in conf/osgi/
folder. It is commented, readable and comprehensive. Most useful properties are easily accessible.

3.3.1. System Packages
The list of System Bundle exported package is expressed using 2 properties :
org.osgi.framework.system.packages and org.osgi.framework.system.packages.extra.

The format of theses properties is a comma separated list of package names (ex :
org.osgi.framework;version=1.5.0), just like a standard Export-Package OSGi™
header.

Note

Wildcards are not accepted in this list, all packages (even sub-packages) have to be
declared individually.

http://websvn.ow2.org/filedetails.php?repname=jonas&path=%2Fjonas%2Fbranches%2Fjonas_5_2%2Fjonas%2Fmodules%2Ftools%2Flaunchers%2Ffelix-launcher%2Fsrc%2Fmain%2Fresources%2Forg%2Fow2%2Fjonas%2Flauncher%2Ffelix%2Fjavase-profiles.properties
http://websvn.ow2.org/filedetails.php?repname=jonas&path=%2Fjonas%2Fbranches%2Fjonas_5_2%2Fjonas%2Fmodules%2Ftools%2Flaunchers%2Ffelix-launcher%2Fsrc%2Fmain%2Fresources%2Forg%2Fow2%2Fjonas%2Flauncher%2Ffelix%2Fjavase-profiles.properties
http://websvn.ow2.org/filedetails.php?repname=jonas&path=%2Fjonas%2Fbranches%2Fjonas_5_2%2Fjonas%2Fmodules%2Ftools%2Flaunchers%2Ffelix-launcher%2Fsrc%2Fmain%2Fresources%2Forg%2Fow2%2Fjonas%2Flauncher%2Ffelix%2Fjavase-profiles.properties
http://websvn.ow2.org/filedetails.php?repname=jonas&path=%2Fjonas%2Fbranches%2Fjonas_5_2%2Fjonas%2Fmodules%2Ftools%2Flaunchers%2Ffelix-launcher%2Fsrc%2Fmain%2Fresources%2Forg%2Fow2%2Fjonas%2Flauncher%2Ffelix%2Fjavase-profiles.properties
http://websvn.ow2.org/filedetails.php?repname=jonas&path=%2Fjonas%2Fbranches%2Fjonas_5_2%2Fjonas%2Fmodules%2Ftools%2Flaunchers%2Ffelix-launcher%2Fsrc%2Fmain%2Fresources%2Forg%2Fow2%2Fjonas%2Flauncher%2Ffelix%2Fjavase-profiles.properties
org/ow2/jonas/launcher/felix/default-config.properties
org/ow2/jonas/launcher/felix/default-config.properties

Configuration

16

Theses packages will then be importable from other Bundles installed on the OSGi™ gateway.

Tweaking the list of system packages may be used to hide or change some attributes of packages, that
let a possibility for other bundles to provide a different version of the exported packages, and leave
the choice to the bundle consummer.

That configuration freedom has to be used with care: org.osgi.framework.system.packages property
has to be used only when it's needed to remove/modify a package in the system default exported list.

Note

javax.transaction + javax.transaction.xa are not exported by the System Bundle in JOnAS
because the JVM misses some of the classes in theses packages

The System extra packages list has to be used when bundles/applications need an additional package
from a library placed in endorsed directories (or in any of the place seached for System ClassLoader:
extensions + CLASSPATH).

Note

Resolve package constraint resolution error with the addition of a new exported packages
declaration to the system.

3.3.2. Boot Delegation
Boot delegation packages is one of the OSGi joker for known non-modular JVM packages. They have
priority over all other way of classloading.

It is configurable through the org.osgi.framework.bootdelegation property. The value is a comma
separated list of packages patterns: wildcard ('*') is only accepted at the end of the pattern.

Note

com.sun.image* : accept classes from com.sun.image and sub-packages

Important

Theses packages do NOT appear in system's exported packages (may lead to unexpected
resolution error)

Touching this property should be avoided as much as possible, because it breaks modularity. As per
the osgi delegation strategy, bootdelegation have the top most priority in loading, so no overridde is
possible: a Bundle cannot use a different version (even if it import it and the import was resolved) !

In clear, it should be used as last resort: when adding packages to System Bundle did not worked or
when a class in a bundle performs some dynamic class loading and makes the assumption that its own
ClassLoader can load the wanted Class. There are multiple condition for this to happen:

• The wanted class is unknown at build time (otherwise a proper import would have been generated)

• The wanted class is in the system ClassLoader (otherwise servicing this class from the System
ClassLoader does not make sense)

• The bundle do not import the resource's package

• You cannot change this Bundle :-(

17

Chapter 4. Tooling

4.1. Web Console: Classloader monitoring
The "Classloader monitoring" module in the jonasAdmin web console aims to help diagnosis of
classloading issues.

It provides a graphical view of Java EE classloading hierarchies and gives a direct way to interact with
ClassLoaders and see their behaviors.

4.1.1. OSGi Diagnosis

The web console offers a search feature that helps to know from which Bundle a class/package/
resource comes from.It displays the wired consumer Bundle(s).

It helps to see if a Bundle is wired to the right package provider.

Tooling

18

Figure 4.1. OSGi Diagnosis

<title>Search for a given class in all the OSGi bundles</title>

4.1.2. Java EE Hierarchies
The web console also offers a Java EE ClassLoading hierarchy view. It is dedicated to a selected Java
EE module and show the ancestry of Classloader.

Tooling

19

Filtering patterns associated to ClassLoaders are also displayed.

This view permits to test resource loading from the selected ClassLoader. That helps to see if the class
comes from the expected source.

20

Chapter 5. Tips
5.1. Abstract Factory Pattern
5.1.1. Error pattern

In an eye blink, suspect all static Factory.newInstance() methods.

The AbstractFactory pattern is a well known and quite used pattern. There is an abstract Factory class
with an implemented static method (newInstance()). This method is in charge of finding a suitable
implementation that will be returned to the consumer. JAXP API are using this pattern.

Usually this method performs the following operations:

1. Try to find the name of a class (the concrete Factory) to load.

Usually, the search is done in some dedicated property files, system properties, default hardcoded
value, ...

2. Try to load the discovered class using a guessed loader.

Used loaders depends on the code but usually involves (ordre is not significant here):

• Thread Context ClassLoader

• ClassLoader of the Factory

• System ClassLoader

• A given ClassLoader (could be passed as parameter with some luck)

3. Creates an instance of the loaded Class (if one could be loaded)

Important

This kind of code make the assumption that they can load any class.

This is not true (even completely wrong) in a modular world

5.1.2. Solutions
The environment has to be adapted to what is expected by the code:

• Give an appropriate ClassLoader (if possible)

• Set a Thread Context ClassLoader to a ClassLoader that will be able to load the Class.

Note

Do not forget to reset to old ClassLoader after the call (try/finally) !

ClassLoader expected = ...
ClassLoader old = Thread.currentThread().getContextClassLoader();
Thread.currentThread.setContextClassLoader(expected);
try {
 // Do whatever you want in this block
 Factory factory = Factory.newInstance();
} finally {
 // Reset the TCCL
 Thread.currentThread.setContextClassLoader(old);
}

Tips

21

5.2. ClassCastException

5.2.1. Error pattern
Conflicting libraries are found in JOnAS and in an application.

Delegation mechanism, and the logic used to find an implementation, produces an instance from a
Class incompatible with expected type.

For example, the loaded type comes from the System ClassLoader but the expected type comes from
the webapp ClassLoader.

5.2.2. Solutions
Use the stacktrace to extract faulty classnames: that's the main suspects.

Use the console to find from where theses classes/packages are loaded.

Display Right/Left ClassLoader of the assignation to discover the ClassLoader sources. -

• Interesting values: Expected type/loader, Returned type/loader, TCCL

• Similar to the info the console provides

Filter the package(s) to force resolution in your application codebase.

Usually go back to first bullet until no more Exceptions .

5.3. Code rules !
To understand what happen, knowing the ClassLoader hierarchies helps a lot but is not always
sufficent.

Reading the source code gives the final clues explaining the observed behavior.

Note

People do a lot of things in Java with class loading (some even weird)

5.4. Boot Delegation
Format of boot delegation pattern is somehow sensible. Here are examples and explanations.

• No wildcard (ex: com.sun.xml): Only matches classes directly in the given package

• Dot and wildcard (ex: com.sun.xml.*): Only matches classes in sub packages (direct content does
not match)

• Only wildcard (ex: com.sun.xml*): Matches both direct package and sub packages. But also matches
for packages sharing the same chars at the beginning of their names.

Table 5.1. Boot Delegation Patterns Examples

Pattern / Match ? com.sun.xml.Parser ? com.sun.xml.mine.MineParser ?com.sun.xmlaa.AaParser ?

com.sun.xml YES NO NO

com.sun.xml.* NO YES NO

com.sun.xml* YES YES YES

	Mastering JOnAS ClassLoaders
	Table of Contents
	Chapter 1. Basics of ClassLoading
	1.1. ClassLoader
	1.1.1. Usage
	1.1.2. Delegation

	1.2. Class
	1.3. CLASSPATH
	1.3.1. Bootstrap loader
	1.3.2. Extensions loader
	1.3.3. System loader

	Chapter 2. ClassLoading in JOnAS
	2.1. JOnAS Internals (OSGi)
	2.1.1. Modular Application Server
	2.1.2. OSGi™ ClassLoading
	2.1.2.1. Bundle
	2.1.2.1.1. Bundle ClassPath
	2.1.2.1.2. Exporting Packages
	2.1.2.1.3. Importing Packages

	2.1.2.2. Class Space
	2.1.2.3. Delegation
	2.1.2.4. System Bundle
	2.1.2.5. JOnAS

	2.2. Endorsed
	2.3. Code Sharing
	2.3.1. Existing Bundles
	2.3.2. Jar Files

	2.4. Java EE Modules
	2.4.1. Overview
	2.4.1.1. Standalone modules
	2.4.1.2. Embed modules

	2.4.2. Java 2 Delegation Model
	2.4.3. Web Applications
	2.4.3.1. Delegation Strategy

	2.4.4. Ears, EjbJars and Rars

	Chapter 3. Configuration
	3.1. Isolating Java EE modules with filters
	3.1.1. ClassLoader Filtering
	3.1.1.1. XML Configuration

	3.1.2. Filtering Usage

	3.2. Inverting Java2 delegation model for webapp
	3.3. Publishing system packages
	3.3.1. System Packages
	3.3.2. Boot Delegation

	Chapter 4. Tooling
	4.1. Web Console: Classloader monitoring
	4.1.1. OSGi Diagnosis
	4.1.2. Java EE Hierarchies

	Chapter 5. Tips
	5.1. Abstract Factory Pattern
	5.1.1. Error pattern
	5.1.2. Solutions

	5.2. ClassCastException
	5.2.1. Error pattern
	5.2.2. Solutions

	5.3. Code rules !
	5.4. Boot Delegation

