
Java EE Programmer's Guide

JOnAS Team ()

- Feb 2008 -

Copyright © OW2 Consortium 2008-2009

This work is licensed under the Creative Commons Attribution-ShareAlike License. To view
a copy of this license,visit http://creativecommons.org/licenses/by-sa/2.0/deed.en or send
a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

ii

Table of Contents
... iv
1. Principles ... 1

1.1. Enterprise Bean Creation .. 1
1.2. Web Components Creation ... 1
1.3. Application Deployer and Administrator ... 1
1.4. Java EE Application Assembler ... 2

2. JOnAS Class Loader .. 3
2.1. JOnAS classloading architecture .. 3

2.1.1. Understanding class loaders hierarchies .. 3
2.1.2. Application Server's class loaders .. 4
2.1.3. Java EE module's class loaders ... 6
2.1.4. Filtering class loaders .. 8

iii

List of Figures
2.1. Filtering ClassLoader Principle .. 9

iv

The target audience for this guide is the application component provider, i.e., the person in charge of
developing the software components on the server side (the business tier).

1

Chapter 1. Principles
JOnAS supports two types of Java EE application components: Enterprise Beans and Web
components. In addition to providing guides for construction of application components, guides are
supplied for application assembly, deployment, and administration.

1.1. Enterprise Bean Creation
The individual in charge of developing Enterprise Beans should consult the for instructions on how
to perform the following tasks:

1. Write the source code for the beans.

2. Specify the deployment descriptor.

3. Bundle the compiled classes and the deployment descriptor into an EJB JAR file.

JOnAS 5 supports both versions 2 and 3 of the Enterprise Java Beans (EJB) specifications.
Programming and configuration methods between these two versions have changed drastically, we
therefore provide you with two different programmer's guides:

• Enterprise Beans Programmer's Guide, for EJB version 3 (recommended)
[ejb3_programmer_guide.html]

• Enterprise Beans Programmer's Guide, for EJB version 2 [ejb2_programmer_guide.html]

1.2. Web Components Creation
Web designers in charge of JSP pages and software developers providing servlets can consult the Web
Application Programmer's Guide.

The Developing Web Components [web_pg.html#web.component] guide explains how to construct
Web components, as well as how to access Enterprise Beans from within the Web Components.

Deployment descriptor specification is presented in the Defining the Web Deployment Descriptor
[web_pg.html#web.deployment] chapter.

Web components can be used as Web application components or as Java EE application components.
In both cases, a WAR file will be created, but the content of this file is different in the two situations.
In the first case, the WAR contains the Web components and the Enterprise Beans. In the second case,
the WAR does not contain the Enterprise Beans. The EJB JAR file containing the Enterprise Beans is
packed together with the WAR file containing the Web components, into an EAR file. Principles and
tools for providing WAR files are presented in WAR Packaging [web_pg.html#web.packaging] and
the Deployment and Installation Guide [Deployer.html#Deployer].

1.3. Application Deployer and Administrator
JOnAS provides tools for the deployment and administration of Enterprise Beans (EJB JARs), Web
applications (WARs), and Java EE applications (EARs).

The Deployment and Installation Guide [Deployer.html#Deployer] covers issues related to the
deployment of application components.

The Administration Guide [Admin.html#Admin] presents information about how to manage the
JOnAS server and the JOnAS services that allow deployment of the different types of application
components: EJB Container service, Web Container service, and EAR service.

ejb3_programmer_guide.html
ejb3_programmer_guide.html
ejb2_programmer_guide.html
ejb2_programmer_guide.html
web_pg.html#web.component
web_pg.html#web.component
web_pg.html#web.deployment
web_pg.html#web.deployment
web_pg.html#web.packaging
web_pg.html#web.packaging
Deployer.html#Deployer
Deployer.html#Deployer
Deployer.html#Deployer
Deployer.html#Deployer
Admin.html#Admin
Admin.html#Admin

Principles

2

1.4. Java EE Application Assembler
The application assembler in charge of assembling the application components already bundled in
EJB JAR files and WAR files into a Java EE EAR file, can obtain useful information from the Java
EE Application Assembler's Guide [eardeploy.html].

eardeploy.html
eardeploy.html
eardeploy.html

3

Chapter 2. JOnAS Class Loader

2.1. JOnAS classloading architecture
This section introduces the classloading architecture of JOnAS.

2.1.1. Understanding class loaders hierarchies
Obviously, a ClassLoader is used to load classes (and resources) that will then be usable from the
application. Most of the ClassLoaders are URLClassLoaders, that means that they are based on a
set of URLs. Theses URLs will be the place where the ClassLoader, when asked for a resource (using
its fully qualified name, ie including full package name), will try to find the resource.

An URLClassLoader always have a parent ClassLoader. When loading a class, the first thing a
ClassLoader do is to ask its parent to load the class (this is recursive). If the parent return the Class,
it's returned to the caller. Otherwise, the URLs will be search for the given class. this is the default
Java delegation model (parent first).

Let's roll with an example: you have a ClassLoader (let's call it A) that can load the class Test, A is
the parent of B, but B do not contains the Test class, and B is the parent of C, with C that contains
also the Test class. Clearly, there is a ClassLoader hierarchy here (C->B->A, with "->" meaning "is
child of"). If you ask C to load Test, the following steps will be performed:

1. C have B as parent, so asks B to try to load Test

2. B have A as parent, so asks A to try to load Test

3. A is the top level ClassLoader, no parent, it will try to load test by itself

4. As A contains the Test class, it can be loaded and returned

5. B see that A (its parent) have loaded the class, so it return it as is

6. C see that B (its parent) have loaded the class, so it return it as is

Note

Using the Java delegation model, the loaded class is always coming from the parent
ClassLoader that is closer to the System class loader (the well known CLASSPATH),
even if the class exists in a lower level ClassLoader (aka child ClassLoaders).

Java EE makes an heavy use of ClassLoaders: the application server in itself may be composed of
multiple ClassLoaders and the Java EE applications (EAR, Rar, War, EjbJar) themselves are using
ClassLoaders.

An application is deployed by its own class loader. This means, for example, that if a Web Application
and an EjbJar are deployed separately, the classes contained in the two archives are loaded with two
separate classloaders with no hierarchy between them. Thus, the EJBs from within the JAR will not be
visible to the Web components in the WAR. This is not acceptable in cases where the Web components
of an application need to reference and use some of the EJBs (this concerns local references in the
same JVM).

Note

Class loaders are used to ensure class space isolation.

JOnAS Class Loader

4

For this reason, prior to EAR files, when a Web application had to be deployed using EJBs, the EjbJar
had to be located in the WEB-INF/lib directory of the Web application.

Currently, with the Java EE integration and the use of the EAR packaging, that kind of class visibility
problems no longer exist and the EjbJar is no longer required in the WEB-INF/lib directory.

The following sections describe the JOnAS class loaders and explain the mechanism used to locate
the referenced classes.

2.1.2. Application Server's class loaders

JOnAS is basically an assembly of modules providing the features that makes JOnAS an application
server. Each of the modules have an associated class loader. All theses loaders have visibility
constraints, meaning that some of the internal classes or libraries used by JOnAS are hidden from the
application class space. In clear, even if JOnAS may use a library also used by a deployed application,
there will be no conflicts.

Note

Having visibility constraints on class loaders reduce the risks of conflicting libraries.

The loaders of JOnAS are not in a tree hierarchy. They all share the same parent class loader (the
System classloader), so it's a flat hierarchy. Nevertheless, there are links (aka wires) between theses
class loaders. A module can export some of its packages (and thus, all the classes from that package)
to the system. Theses exported packages can then be imported by other modules. That creates a wire.
As a module can be wired to multiple others modules, the class loaders of the application server forms
an oriented graph of loaders.

Note

The class loading rules are described in much more details in the OSGi™ specification.

Note

Only exported packages are available to the applications

JOnAS Class Loader

5

JOnAS Class Loader

6

2.1.2.1. Extending JOnAS class loaders

As JOnAS is build on a modular system (OSGi™), it's very natural to "extends" the application server's
class space.

There are 2 way that can be used to augment the class space:

1. Place an OSGi™ bundle containing your classes in the ${jonas.base}/deploy/ directory

It will be deployed as any normal bundle, and if it's resolved (ie all imported packages are found),
all the packages exported by this bundle will be made available to the server (and applications).

Note

This is the preferred way to augment the class space.

2. Place a classic jar file in the ${jonas.base}/lib/ext/ (or ${jonas.root}/lib/
ext/). During JOnAS startup, theses jar files will automatically be transformed into bundle (using
default creation rules) and installed like all other bundles.

Note

The default rule is: every required packages that is not in the jar file will be imported,
and every packages of the jar will be exported.

Warning

This option, even if it is seducing, should be used with caution: it can break
application server modularity (if they export a package required by some of the
JOnAS modules, maybe that can cause weird classes exceptions), and, because of
the default transformation rule (all is exported), it's highly possible that a jar file will
export some internal packages that should not have been exposed to the world.

So the right method to augment the class space is to provide a well constructed bundle
(with imports and exports constrained with versions).

2.1.2.2. Using JDBC driver jars

In order to connect the applications to an external database (not HSQL which is embedded in JOnAS),
the user must provide the jar file that contains the JDBC Driver's classes.

Providing theses jar files are just like extending JOnAS class loaders:

• The driver's jar file is already an OSGi™ bundle, so it can be placed in ${jonas.base}/
deploy and it will be deployed automatically

• The jar file is not a bundle, it could be placed in ${jonas.base}/lib/ext and will be (at
startup only) transformed into a bundle (see previous section for detailed information), or the user
takes the responsability of transformation (more fine control on the bundle).

2.1.3. Java EE module's class loaders
Java EE modules are following the classic, hierarchical, parent oriented graph of class loaders.

The class loader hierarchy for Java EE modules that allows the deployment of EAR applications
without placing the EJB JAR in the WEB-INF/lib directory consists of the following:

Caution

Work in progress

JOnAS Class Loader

7

2.1.3.1. Standalone resource adapters loader

This class loader, child of the OSGi™ class loader, contains only the libraries provided by the system
level resource adapters (i.e. resource adapters not part of an EAR application).

This class loader is the parent of all the deployed Java EE modules:

• Standalone Web Applications (.war files)

• Standalone EjbJars (.jar files)

• Java EE Applications (.ear files)

This means that all the classes available from this loader are also made available for the child loaders.

2.1.3.2. Standalone EjbJar loader

A standalone EjbJar classloader contains the classes packaged inside of the ejbjar. The parent of this
classloader is the Section 2.1.3.1, “Standalone resource adapters loader”. It can therefore see all the
classes available from the system level resource adapters and its ancestors.

The classloading policy of this loader is to ask its parent first, and then (if the class was not found) try
to search in itself. There is no way to invert the classloading policy of an EjbJar classloader.

2.1.3.3. Standalone WebApp loader

The classloader for standalone web applications modules contains the classes and libraries packaged
inside of the war.

It contains the WEB-INF/classes/ directory (that usually matches the classes of the application)
and all the jar files located under the WEB-INF/lib/ directory. Notice that only jars directly under
the lib/ directory are available, jars in WEB-INF/lib/subdirectory/ will not be accessible
from the classloader.

The parent of the standalone webapp classloader is the Section 2.1.3.1, “Standalone resource adapters
loader”, meaning that all standalone web applications will be able to use system level resource adapters
classes/libraries and the classes available from its ancestors.

A webapp loader also have a direct link with the system classloader (classes of the JVM + what's
available from the CLASSPATH environment variable). All class loading actions are first directed to
the system classloader to avoid JVM class overloading from the web application (in short, guards the
developer from overloading primordial classes).

Then, if the system classlaoder did not find the required class, the loader will ask either the parent, or
itself. Asking the parent or itself is configured by the delegation model choosed by the developer.

Note

By default, java2 delegation model is turned on.

2.1.3.3.1. Java 2 delegation model

The default classloading policy of a web application in an application server (in opposition of a webapp
hosted in a standalone servlet container) is to ask the parent loader first, and then look inside itself (if
the parent did not find the required class), this is the default java2 delegation model.

Nevertheless, a web application developer can configure the web classloader to use first itself, then ask
the parent loader. That means that the web application classes will have more priority than classes from

JOnAS Class Loader

8

the parent loader, in other words it can be used to overload some classes provided by the application
server.

The delegation model can be configured using the WEB-INF/jonas-web.xml specific
deployment descriptor, as shown below.

<?xml version="1.0" encoding="ISO-8859-1"?>
<jonas-web-app xmlns="http://www.objectweb.org/jonas/ns"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.objectweb.org/jonas/ns
 http://jonas.ow2.org/ns/jonas-web-app_4_0.xsd">
 <!--
 true : the context uses a classloader using the Java 2 delegation model (default)
 false : the class loader looks inside the web application first, before asking parent
 class loader
 -->
 <java2-delegation-model>false</java2-delegation-model>
</jonas-web-app>

2.1.3.4. EAR class loader

The EAR class loader is the common parent (directly or indirectly) of all the class loaders of the inner
modules (ejbjars, rar, webapps). There is only one EAR class loader per EAR application. This class
loader is the child class loader, thus making JOnAS classes visible to it. The parent of all the EAR
class loaders is a JOnAS special class loader that is able to seek for classes/resources exported by all
the other module's class loaders of JOnAS.

2.1.3.5. EJB class loader

The EJB class loader is responsible for loading all the EJB JARs of the EAR application, thus all the
EJBs of the same EAR application are loaded with the same EJB classloader. This class loader is the
child of the EAR class loader.

2.1.3.6. WEB class loader

The WEB class loader is responsible for loading the Web components. There is one WEB class loader
per WAR file, and this class loader is the child of the EJB class loader. Using this class loader hierarchy
(the EJB class loader is the parent of the WEB class loader) eliminates the problem of visibility
between classes when a WEB component tries to reference EJBs; the classes loaded with the EJB class
loader are definitely visible to the classes loaded by its child class loader (WEB class loader).

The compliance of the class loader of the web application to the java 2 delegation model can be
changed by using the WEB-INF/jonas-web.xml file. This is described in the section Defining
the Web Deployment Descriptor [j2eeprogrammerguide.html#j2ee.pg.classloader].

If the java2-delegation-model element is set to false, the class loader of the web application looks
for the class in its own repository before asking its parent class loader. See Section 2.1.3.3.1, “Java 2
delegation model” for more detailed explanations.

2.1.4. Filtering class loaders

2.1.4.1. The problem

By default, all classes exported by the application server can be accessed within an application.
Sometimes this may cause problems if there are different versions of the library (in the AS and in
the application).

For example, JOnAS is using Apache Commons Digester. If an application wants to use an older
version of this library, there is a problem as the default loading mechanism of classes is searching first
in the parent classloaders. Then the library provided by JOnAS and not by the application will be used.

j2eeprogrammerguide.html#j2ee.pg.classloader
j2eeprogrammerguide.html#j2ee.pg.classloader
j2eeprogrammerguide.html#j2ee.pg.classloader

JOnAS Class Loader

9

For web applications, this mechanism could be changed by using java2-delegation-model
but this may raise problems for EAR case, etc.

2.1.4.2. The solution

JOnAS is providing the concept of filtering classloader. A filtered classloader will hide to applications
some packages/resources exported by the Application Server.

A FilteringClassLoader is simply placed between a child ClassLoader and its parent and
filter any requests coming from the child to the parent.

Figure 2.1. Filtering ClassLoader Principle

This approach allows a fine grain control over what is visible or not from a given ClassLoader.

Any loading request for a resource will trigger a matching against a list of excluded patterns. If any
of the pattern match, the resource will not be loaded and the flow will return to the caller.

Loading of a filtered resource (image, static content, ...) will result in null (the usual
return for a resource not found) being returned. If the loading request a filtered class, a
ClassNotFoundException will be thrown back to the caller (the usual return when a class is
not found).

JOnAS Class Loader

10

2.1.4.3. Filtering system resources

Some filters are configured by default in JOnAS. They will be applied to the "standalone rars"
ClassLoader, effectively filtering resource/class request from all the deployed applications (among
just the standalone resource adapters). This is a system wide configuration.

These default filters are located in the JONAS_BASE/conf/classloader-default-
filtering.xml file.

<class-loader-filtering xmlns="http://org.ow2.jonas.lib.loader.mapping">

 <!-- List of filters used to exclude packages/resources that are used internally by
 the Application Server but that will not be available to applications.
 An empty list will not hide any packages to the applications
 This list is used both to hide resources and classes to applications. -->
 <default-filters>
 <filter-name>org.apache.commons.digester.*</filter-name>
 </default-filters>
</class-loader-filtering>

By modifying the set of filters, some packages will be hidden to the applications. Note that resources
name can be specified. For example, when putting a resource in JONAS_BASE/conf folder, this
resource can be obtained by using ClassLoader.getResource() method. By adding a filter
on this resource, the resource won't be available to applications (This includes EAR, WAR and EJB-
JAR modules).

2.1.4.4. Filtering deployed modules

In addition of the system wide filters configuration, JOnAS allows Java EE modules to provide
themselves the filters they requires.

It can be done by providing a classloader-filtering.xml file in the info directory of the
deployed module (META-INF/ or WEB-INF/).

2.1.4.4.1. Supported module types

Not all modules supports the classloader filtering feature.

Supported modules includes:

• EAR applications (.ear)

• Web Applications (.war), inside or outside an application

• EjbJars (.jar), only the ones outside of an application

Tip

Web Applications filtering rules also apply when they are in an application (EAR).

2.1.4.4.2. Declaring the filters

A Java EE module declares the filters it requires with an XML file named META-INF/
classloader-filtering.xml (WEB-INF/classloader-filtering.xml for a web
application). its format is very similar to the system wide configuration file (<default-filters>
simply become <filters>):

<class-loader-filtering xmlns="http://org.ow2.jonas.lib.loader.mapping">

 <filters>
 <!-- Excludes all CXF resources as another version is embed in the web application
 -->
 <filter-name>org.apache.cxf.*</filter-name>

JOnAS Class Loader

11

 <!-- plus some other dependencies of CXF ... -->
 <filter-name>org.springframework.*</filter-name>
 <filter-name>net.sf.cglib.*</filter-name>
 <filter-name>org.objectweb.asm.*</filter-name>
 </filters>

</class-loader-filtering>

2.1.4.4.3. What about Rars and Ejbjars ?

Standalone Resource Adapters are all sharing the same ClassLoader. This loader is the parent of
all the applications and is the one that is filtered by the system wide configuration file. That means
that standalone Rars cannot have their own filtering configuration. They have to use (or modify) the
classloader-default-filtering.xml file to fit their needs.

EjbJars in Ear do not have support for the filtering. First, an EjbJar should not contains any library,
so what could you filter ? Then EjbJars are all placed (along with Ear libraries) inside a unique
ClassLoader, direct child of the application loader (containing Rars embed in the Ear), so they can
indirectly benefit from the filters declared inside the application.

	Java EE Programmer's Guide
	Table of Contents
	
	Chapter 1. Principles
	1.1. Enterprise Bean Creation
	1.2. Web Components Creation
	1.3. Application Deployer and Administrator
	1.4. Java EE Application Assembler

	Chapter 2. JOnAS Class Loader
	2.1. JOnAS classloading architecture
	2.1.1. Understanding class loaders hierarchies
	2.1.2. Application Server's class loaders
	2.1.2.1. Extending JOnAS class loaders
	2.1.2.2. Using JDBC driver jars

	2.1.3. Java EE module's class loaders
	2.1.3.1. Standalone resource adapters loader
	2.1.3.2. Standalone EjbJar loader
	2.1.3.3. Standalone WebApp loader
	2.1.3.3.1. Java 2 delegation model

	2.1.3.4. EAR class loader
	2.1.3.5. EJB class loader
	2.1.3.6. WEB class loader

	2.1.4. Filtering class loaders
	2.1.4.1. The problem
	2.1.4.2. The solution
	2.1.4.3. Filtering system resources
	2.1.4.4. Filtering deployed modules
	2.1.4.4.1. Supported module types
	2.1.4.4.2. Declaring the filters
	2.1.4.4.3. What about Rars and Ejbjars ?

