
JOnAS 5 Configuration guide

JOnAS Team ()

- September 2009 -

Copyright © OW2 Consortium 2007-2009

This work is licensed under the Creative Commons Attribution-ShareAlike License. To view
a copy of this license,visit http://creativecommons.org/licenses/by-sa/2.0/deed.en or send
a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

ii

Table of Contents
1. Introduction .. 1

1.1. Configuring JOnAS ... 1
1.2. Terminology .. 1

1.2.1. Server or JOnAS instance .. 1
1.2.2. Service ... 1
1.2.3. Container .. 1
1.2.4. Domain .. 1
1.2.5. Master server ... 2
1.2.6. Cluster .. 2

2. Configuring a JOnAS instance ... 3
2.1. Configuring JOnAS Environment ... 3

2.1.1. JONAS_ROOT structure .. 3
2.1.2. JONAS_BASE structure .. 4
2.1.3. JONAS_BASE creation ... 5
2.1.4. JONAS_BASE/conf description .. 6
2.1.5. Server and services configuration .. 7

2.2. Configuring the communication protocol and JNDI ... 12
2.2.1. Choosing the Protocol ... 12

2.3. Configuring the logging System ... 14
2.3.1. Monolog ... 14
2.3.2. trace.properties syntax ... 14
2.3.3. default trace.properties file ... 16
2.3.4. Tips for setting loggers for JOnAS ... 16
2.3.5. Logging with particular log systems ... 18

2.4. Configuring JOnAS Services ... 18
2.4.1. cmi service configuration ... 18
2.4.2. db service configuration ... 20
2.4.3. depmonitor service configuration ... 21
2.4.4. dbm service configuration .. 21
2.4.5. discovery service configuration ... 22
2.4.6. ear service configuration .. 24
2.4.7. ejb2 Service configuration .. 25
2.4.8. ejb3 service configuration ... 26
2.4.9. ha service configuration ... 27
2.4.10. jaxrpc service configuration .. 27
2.4.11. jaxws service configuration ... 28
2.4.12. jmx service configuration ... 28
2.4.13. jtm service configuration .. 30
2.4.14. mail service configuration ... 30
2.4.15. registry service configuration ... 33
2.4.16. resource service configuration ... 33
2.4.17. security service configuration .. 34
2.4.18. smartclient service configuration .. 34
2.4.19. versioning service configuration ... 35
2.4.20. wc service configuration ... 38
2.4.21. web service configuration ... 38
2.4.22. wm service configuration .. 39
2.4.23. wsdl-publisher service configuration ... 40

2.5. Configuring Security .. 41
2.5.1. jonas-realm.xml .. 42
2.5.2. Servlet Authentication ... 43
2.5.3. Client container Authentication ... 47
2.5.4. JAAS configuration ... 47

2.6. Configuring JDBC Resource Adapters .. 50
2.6.1. Generic JDBC Resource Adapters .. 50

JOnAS 5 Configuration guide

iii

2.6.2. Specific JDBC Resource Adapter ... 51
2.6.3. Examples of Specific JDBC Resource Adapter ... 55
2.6.4. Tracing SQL Requests through P6Spy .. 57
2.6.5. Migration from dbm service to the JDBC RA ... 58

2.7. Configuring JMS Resource Adapters .. 59
2.7.1. JORAM Resource Adapter configuration files .. 59
2.7.2. JORAM's Resource Adapter tuning .. 67
2.7.3. Undeploying and Redeploying a JORAM Adapter 68

2.8. Configuring JDBC DataSources ... 68
2.8.1. Configuring DataSources .. 68

3. EasyBeans Server Configuration File .. 73
3.1. Introduction .. 73
3.2. Configuration ... 74

3.2.1. RMI Component ... 74
3.2.2. Transaction Component ... 74
3.2.3. JMS Component ... 74
3.2.4. HSQL Database .. 75
3.2.5. JDBC Pool .. 75
3.2.6. Mail component ... 75
3.2.7. SmartServer Component .. 75

3.3. Advanced Configuration ... 75
3.3.1. Mapping File ... 75
3.3.2. Other Configuration Files ... 77

4. Glossary ... 78

iv

List of Examples
2.1. Configuring the cmi service in the server mode .. 19
2.2. Configuring the cmi service in the client mode ... 20

1

Chapter 1. Introduction

1.1. Configuring JOnAS
Configuration is a task that may be more or less complex. Configuring a unique instance is obviously
easier than configuring a cluster of servers.

Configuration task consists mainly in customizing a set of JOnAS configuration files that compose
the JOnAS environment see Section 2.1, “Configuring JOnAS Environment”.

First of all, some terms used is this document must be defined:

1.2. Terminology

1.2.1. Server or JOnAS instance
A server, or JOnAS instance, is a java process started via the jonas start command, or via the
administration tool Java EE.

Several servers may run on the same physical host.

1.2.2. Service
When a server starts, services are started.

A service typically provides system resources to containers. Most of the components of the JOnAS
application server are pre-defined services. However, it is possible and easy for an advanced user to
define a new service and to integrate it into JOnAS.

JOnAS services are manageable through JMX.

1.2.3. Container
A container consists of a set of Java classes that implement the Java EE specification. The role of the
container is to provide the facilities for executing Java EE components.

There are three types of containers:

• EJB container in which Enterprise JavaBeans are deployed and run

• Web container for JSPs and servlets

• Client container

1.2.4. Domain
A domain represents an administration perimeter which is under the control of an administration
authority.

This perimeter contains management targets like servers and clusters.

If a domain contains several elements, it provides at least one common administration point
represented by a master server.

Introduction

2

1.2.5. Master server
A master is a JOnAS instance having particular management capabilities within the domain:

• it is aware of the domain's topology

• it allows management and monitoring of all the elements belonging to the domain

1.2.6. Cluster
A cluster is a group of JOnAS servers having common properties within a domain. It usually allows
to run a J2EE application, or a J2EE module, on the cluster members as if they were a single server.
The objective is to achieve applications scalability and high availability.

JOnAS supports several cluster types:

• Clusters for Web level load-balancing

• Clusters for high availability of Web components

• Clusters for EJB level load-balancing

• Clusters for high availability of EJB components

• Clusters for JMS destination scalability and high availability

• Clusters for administration purpose which facilitate management operations like deployment /
undeployment.

From the administrator point of view, a cluster represents a single administration target.

Note that a particular JOnAS server may belong to zero, one or more clusters.

3

Chapter 2. Configuring a JOnAS
instance

JOnAS is pre-configured and ready to be used directly. The Getting Started book
[GettingStarted.html#GettingStarted] has shown that a very sample example may be run after JOnAS
installation without any configuration task. But as soon as your application needs to use resources
specific to the execution environment, configuration is mandatory.

In this chapter we will see in a first part where are the configuration files and then what that can be
configured

2.1. Configuring JOnAS Environment
JOnAS distribution contains a number of configuration files in $JONAS_ROOT/conf directory.
These files can be edited to change the default configuration. However, it is recommended that the
configuration files needed by a specific application running on JOnAS be placed in a separate location.
This is done by using an additional environment variable called JONAS_BASE.

JOnAS configuration files are read from the $JONAS_BASE/conf directory. If JONAS_BASE is not
defined, it is automatically initialized to $JONAS_ROOT.

2.1.1. JONAS_ROOT structure
The installation directory (JONAS_ROOT) has the following structure:

• the deploy/ directory

The main location used for deployment.

At JOnAS startup, all deployment plans, Java EE archives and OSGi bundles are deployed in the
following order:

1. Deployment plan repositories

2. OSGi bundles

3. RAR archives

4. Deployment plan resources

5. EJB archives

6. WAR archives

7. EAR archives

Note

For each category, file names are chosen in alphabetical order

This directory is periodically polled in order to deploy new archives.
For more information have a look at the depmonitor service configuration
[configuration_guide.html#services.depmonitor.config]

• the bin/ directory

contains the scripts used to launch JOnAS (Unix and Windows scripts).

GettingStarted.html#GettingStarted
GettingStarted.html#GettingStarted
configuration_guide.html#services.depmonitor.config
configuration_guide.html#services.depmonitor.config

Configuring a JOnAS instance

4

• the conf/ directory

contains the JOnAS configuration files.

• the examples/ directory

this sub tree containing all the JOnAS examples that are described in ???

• the lib/ directory 1

Used for extending class loaders. It contains five sub directories:

Directory Description

bootstrap/ Jars loaded by the JOnAS bootstrap

common/ Legacy directory where Ant tasks are stored

endorsed/ Jars overridding JVM libraries

ext/ For non-bundle extensions

internal-ee-tld/ Internal use only !

• the logs/ directory

where the log files are created at run-time (when the JONAS_ROOT is used as a JONAS_BASE)

• the templates/ directory

this sub tree contains the following subdirectories used by JOnAS during the generation process
(eg, JONAS_BASE generation).

• conf/ is an empty template of the JONAS_BASE structure used by tools able to create a
JONAS_BASE environment.

• newjb/ contains the configuration files for creating a JONAS_BASE environment.

• newjc/ contains the configuration files for creating a cluster environment.

• the repositories/ directory

this sub tree contains the following repositories used to store OSGi bundles, Java EE applications
and deployment plans.

• maven2-internal/ contains both OSGi bundles and applications (jonasAdmin,
documentation, ...) for JOnAS. It is used for internal purpose and should not be modified. This
directory is structured as a Maven2 repository.

• url-internal/ contains the deployment plans of each JOnAS services. It is used for internal
purpose and should not be modified.

• <repository-id>/ contains archives downloaded through deployment plans from this
repository.

2.1.2. JONAS_BASE structure
JONAS_BASE has the following structure:

• the conf/ directory

contains JOnAS configuration files.

• the deploy/ directory

Configuring a JOnAS instance

5

is the main location used for deployment.

At JOnAS startup time all the deployment plans, Java EE archives and OSGi bundles are deployed
in the following order:

1. Deployment plan repositories

2. OSGi bundles

3. RAR archives

4. Deployment plan resources

5. EJB archives

6. WAR archives

7. EAR archives

Note

For each category, file names are chosen in alphabetical order
Then this directory is periodically polled in order to deploy new archives.
For more information have a look at the depmonitor service configuration
[configuration_guide.html#services.depmonitor.config]

• the lib/ directory 2

Used for extending class loaders. It contains one sub directory:

directory description

ext For non-bundle extensions

• the logs/ directory

where the log files are created at run-time

• the work/ directory

a working directory for JOnAS

• the repositories/ directory

this sub tree contains the following repositories used to store OSGi bundles and Java EE
applications. Archives located in these repositories are priority in case they are also located in
JONAS_ROOT/repositories

• maven2-internal/ this directory is created during the building process of a JONAS_BASE
environment. It may contain the JORAM resource adapter for JOnAS. It is used for internal
purpose and should not be modified. This directory is structured as a Maven2 repository.

• <repository-id>/ contains archives downloaded through deployment plans from this
repository.

2.1.3. JONAS_BASE creation
1. To create a JONAS_BASE template from scratch :

Unix

configuration_guide.html#services.depmonitor.config
configuration_guide.html#services.depmonitor.config

Configuring a JOnAS instance

6

export JONAS_BASE=~/my_jonas_base
cd $JONAS_ROOT/templates/newjb
ant -f build-jb.xml create_jonas_base

Windows

set JONAS_BASE=my_jonas_base
cd %JONAS_ROOT%/templates/newjb
ant -f build-jb.xml create_jonas_base

This will copy all the required files and create all the needed directories.

2. Another way to create a JONAS_BASE template from scratch :

$JONAS_ROOT/bin must be set in the system path:

Unix

export JONAS_BASE=~/my_jonas_base
newjb

Windows

set JONAS_BASE=my_jonas_base
newjb

The JONAS_BASE content created with the newjb command is well suited to run the JOnAS JEE
conformance test suite and the example applications without any additional configuration.

In order to customize a JONAS_BASE with specific property values (port numbers,
services, protocols etc...), you must edit the $JONAS_ROOT/templates/newjb/build-
jb.properties file or $HOME/jb.config/conf/jonas-newjb.properties file
before running newjb.

For further customization that cannot be performed by newjb you should modify the generated
files in $JONAS_BASE/conf. For more information see the description of the newjb command
in Commands Reference Guide [./command_guide.html#commands.newjb].

2.1.4. JONAS_BASE/conf description
This directory contains configuration files in various format (properties files, xml files).

The main configuration file is jonas.properties but there are also:

• Templates for configuring access to databases for the dbm service, (Oracle, PostgreSQL, Sybase,
DB2, MySQL, HSQLDB, InterBase, FirebirdSQL, Mckoi SQL, InstantDB) respectively in
Oracle1.properties, PostgreSQL1.properties,etc... All these databases have been tested with
JOnAS.

• Mail resources templates : MailMimePartDS1.properties, MailSession1.properties

• JORAM configuration files : a3debug.cfg, a3servers.xml, joramAdmin.xml

• EasyBeans ejb3 container configuration file is named easybeans-jonas.xml.

• carol.properties, jacorb.properties for configuring the RMI implementation used through CAROL.

• Configuration files for clustering : cmi-config.xml, clusterd.xml, domain.xml, jgroups-
discovery.xml, jgroups-ha.xml, jgroups-cmi.xml.

• Configuration files related to security: jaas.config, java.policy, jonas-realm.xml

./command_guide.html#commands.newjb
./command_guide.html#commands.newjb

Configuring a JOnAS instance

7

• Web container configuration files:

• tomcat6-server.xml, tomcat6-context.xml, tomcat6-web.xml for Tomcat,

• jetty6.xml jetty6-web.xml for Jetty.

• Web services configuration files:uddi.properties, file1.properties.

• Client container configuration file: jonas-client.properties

• JOnAS traces configurations files: trace.properties, traceclient.properties

• Transaction recovery configuration file : jotm.properties

• P6Spy options file: spy.properties

• Java Service Wrapper configuration file: wrapper.conf

• Deployment plan initial repositories are stored in initial-repositories.xml file.

• jmx.access, jmx.passwords and jmx.rolbased.access are configuration files used to secure the JMX
connector access.

• jndi-interceptors.xml is used by the JNDI Interceptors allowing for example to automatically close
the JDBC connections if they're not closed by the application.

• classloader-default-filtering.xml allows to hide to applications some classes exported by the
Application Server.

• banner.txt allows to change the banner of the JOnAS scripts.

Most of these files are described in following sections.

2.1.5. Server and services configuration
$JONAS_BASE/conf/jonas.properties is the key file for configuring JOnAS.

This file is used for:

• setting some global properties for the JOnAS instance

• choosing the list of JOnAS services to be launched at startup

• customizing each services

2.1.5.1. Global properties

Name of the JOnAS server
default value is "jonas"
jonas.name jonas

Name of the JOnAS domain
default value is "jonas"
domain.name jonas

Enable the Security context propagation (for jrmp)
jonas.security.propagation true

Enable the Security manager
default value is true (if not set)
Setting this to false implies a collocated registry and setting in carol.properties:
carol.jvm.rmi.local.registry=true
jonas.security.manager false

Configuring a JOnAS instance

8

Enable csiv2
jonas.csiv2.propagation true

Enable the Transaction context propagation
jonas.transaction.propagation true

Set the name of log configuration file
jonas.log.configfile trace

Set to true if the server is a master
jonas.master false

Set to true in order to execute the JOnAS Server in development mode.
#
WAR archive deployment case in development mode (for single or EAR packaged WARs):
Each modified WAR archive will be unpacked in the working directory of the JOnAS Server
in a different folder to avoid file locks. This is especially useful in a Windows
 environment.
jonas.development true

Note

setting jonas.security.manager to false implies a colocated registry and implies to set
in carol.properties:

carol.jvm.rmi.local.registry=true

2.1.5.2. List of JOnAS services

Here is the list of default services activated at starting time:

jonas.services jtm, db, security, resource, ejb3, jaxws, web, ear, depmonitor

The possible services are:

registry, jmx, security, jtm, db, mail, wc, dbm, wm, resource, cmi, ha, versioning, ejb2,
 ejb3, jaxrpc, jaxws, web, ear, depmonitor, discovery, resourcemonitor, smartclient, wsdl-
publisher

cmi this service provides support for the clustering of RMI objects.

db this service is used for launching a Java database implementation. By default,
HSQLDB java database is used.

dbm this service is needed by application components that require access to one or
several relational databases. It may be an alternative to the usage of a JDBC
resource adapter via the resource service.

depmonitor this service is used to control the application's deployment process in JOnAS.

discovery this service allows dynamic administration of management domains.

ear this service provides support for Java EE applications (.ear files).

ejb2 this service provides support for EJB 2.x components (EjbJars).

ejb3 this service provides supports for EJB 3.0 components (EjbJars).

ha this service provides high-availability replication mechanims for stateful
session beans (EJB 2.x only).

jaxrpc this service provides support for JAX-RPC 1.1 webservices (J2EE 1.4 style,
based on webservices.xml deployment descriptors).

Configuring a JOnAS instance

9

jaxws this service provides support for JAX-WS 2.0 webservices (Java EE 5.0 style
based on JWS annotations).

jmx this service is needed in order to administrate the JOnAS servers and the
JOnAS services via a JMX-based administration console. It is automatically
launched before all the other services when starting JOnAS.

jtm this service provides support of distributed transactions management.

mail this service is required by applications that need to send e-mail messages.

registry this service is used for binding remote objects and resources that will later be
accessed via JNDI. It is automatically launched before all the other services
when starting JOnAS.

resource this service provides support for resource adapters conformant to the Java
EE Connector Architecture Specification.

resourcemonitor this service is related to the deployment plans. It allows to reload resources
deployed through deployment plans by checking periodically repositories
where are located original resources.

smartclient this service lets remote clients download classes and other resources
necessary for connecting to JOnAS services (JNDI context factories, EJB3
interceptors, ...) directly from the JOnAS server they're dealing with.

security this service is needed for enforcing security at runtime.

versioning this service has been designed for dynamic redeployment of
applications,without any application downtime and without users' sessions
being lost.

wc this service cleans up periodically the work directory of the JOnAS server.

web this service provides support for web components (as Servlets and JSP).
JOnAS provides two implementations of this service, one based on Tomcat
and another on Jetty.

wm this service provides a JCA WorkManager implementation (offering a
manageable Thread Pool for resource adapters components).

wsdl-publisher this service provides an alternate WSDL publishing mechanism (compared
to the usual URL based publishing).

2.1.5.3. Service startup policies

JOnAS will try to start declared services in the order in which they appear in the list except for the
depmonitor service which is always started at the end. If some services require other ones (even non
declared in the list), service requirements will be started first.

To simplify the declaration of JOnAS services and to ensure that all service requirements are fulfilled,
some services declare explicitly their dependencies in order to start them automatically.

The picture below describes mandatory dependencies beetwen JOnAS services. A link between two
services means that a service requires another one. Note on the right side services without dependency
links.

Configuring a JOnAS instance

10

Caution

Optional service dependencies are not described in this picture. They have to be declared
in the list of JOnAS services when required.

• registry and jmx services can be omitted from the list because they are automatically launched.

• As an example, starting the web service involves the startup of the security service. Declaring the
web service in the list of JOnAS services without declaring the security service may be a solution.

• As an example, starting the resource service involves the startup of the wm and the jtm services.
Declaring the resource service in the list of JOnAS services without declaring the wm and the jtm
service may be a solution.

2.1.5.4. Customizing services

Configuration parameters for services follow a strict naming convention: a service XX will be
configured via a set of properties:

jonas.service.XX.foo something

jonas.service.XX.bar else

each service XX must contain the property jonas.service.XX.class indicating the name of the java
class that implements the service:

jonas.service.XX.class aa.bb.XXImpl

Configuring a JOnAS instance

11

This allow experimented user to replace built-in service by an alternative implementation.

For example here is the part of jonas.properties file related to the customization of the jtm
service:

###################### JOnAS JTM Transaction service configuration
Set the name of the implementation class of the jtm service
jonas.service.jtm.class org.ow2.jonas.tm.jotm.JOTMTransactionService

Set the Transaction Manager launching mode.
If set to 'true', TM is remote: TM must be already launched in an other JVM.
If set to 'false', TM is local: TM is going to run into the same JVM
than the jonas Server.
jonas.service.jtm.remote false

Set the default transaction timeout, in seconds.
jonas.service.jtm.timeout 60

see Section 2.4, “Configuring JOnAS Services” for a complete description of the services
configuration.

2.1.5.5. Development vs Production mode

JOnAS may be configured to be in development mode and in production mode. This can be defined
by setting the jonas.development global property. Activating one of this mode changes some server
behaviours as described in the following section.

2.1.5.5.1. Development mode

This is the default mode.

• Starts automatically the workcleaner (wc) service.

• Allows to start automatically services which are required to initiate the deployment of the Java EE
archives. Ex: deploying the sample.war will trigger the startup of the web service.

List of services that may be started dynamically depending on the deployed Java EE archives:

web (WARs), ejb2 (EJB2s), ejb3 (EJB3s), resource (RARs), ear (EARs)

Note

Known limitations: if an application needs some additional services to work like for
example Web Services support (jarxrpc or jaxws services), the administrator have to
add those kind of services manually in the static description of JOnAS services.

• In case of the development property of the depmonitor service is set to inherit, the period scan of
directories managed by the depmonitor (by default the deploy/ directory) service will be enabled.

• WAR archive deployment case (for single or EAR packaged WARs). Each WAR archive is
unpacked in the working directory of the JOnAS server in a different folder to avoid file locks. This
is especially useful in a Windows environment.

• Necessary to enable the onDemand feature of the web service.

2.1.5.5.2. Production mode

This mode is recommended in industrial production context.

• In case of the development property of the depmonitor service is set to inherit, the period scan
of directories managed by the depmonitor (by default the deploy/ directory) service will be
disabled.

Configuring a JOnAS instance

12

• WAR archive deployment case (for single or EAR packaged WARs). Each WAR archive is
unpacked in the working directory of the JOnAS server in the same folder.

• Force the disabling of the onDemand feature of the web service.

2.2. Configuring the communication protocol
and JNDI

JOnAS provides a multi-protocol support through the integration of the CAROL component.

Supported communication protocols are the following:

• RMI/JRMP is the JRE implementation of RMI on the JRMP protocol. This is the default
communication protocol.

• RMI/IIOP is the JacORB [http://www.jacorb.org/] implementation of RMI over the IIOP protocol.

• IRMI is an RMI implementation that can be used with Open Source JDK that doesn't provide
com.sun.* classes.

For each of these protocols, the clustering of RMI objects can be enabled with the component CMI.

2.2.1. Choosing the Protocol
The choice of the protocol is made in the carol.protocols property of carol.properties file
in JONAS_BASE/conf directory.

carol.protocols=jrmp

2.2.1.1. configuring jrmp protocol

carol.protocols=jrmp 1

carol.jrmp.url=rmi://localhost:1099 2

carol.jvm.rmi.local.call=false 3

carol.jvm.rmi.local.registry=false 4

carol.jrmp.server.port=0 5

carol.jrmp.interfaces.bind.single=false 6

1 choice of the protocol or list of protocols
2 connexion url to the RMI registry the hostname (localhost) and port number must be changed if

needed. In a distributed configuration changing the hostname is mandatory.
3 if true local calls are optimized: calls to methods of the remote interface are treated as call to

local methods (it is not always possible depending on the packaging of the application).
4 if true a local Naming context is used. This must be used only with a collocated registry and it

is mandatory when the jonas.security.manager property of jonas.properties is set to true.
5 exported objects will listen on this port for remote method invocations. 0 means random port.

Specify a port may be useful when the server run behind a firewall.
6 if true use only a single interface (choosen from the url) when creating the registry. False means

use all interfaces available.

2.2.1.2. configuring RMI/IIOP protocol

The JacORB implementation of RMI over the IIOP is used. The configuration file of JacORB is the
$JONAS_BASE/conf/jacorb.properties file.

As for the other protocols RMI over IIOP is ready to used in the default distribution. It is only for
tuning purpose that the $JONAS_BASE/conf/jacorb.properties file must be customized.

By default the CORBA Naming service is run using the port 2001 (as it is set in the
carol.properties file)

http://www.jacorb.org/
http://www.jacorb.org/

Configuring a JOnAS instance

13

So the only thing to do for working in RMI over IIOP is to set the property protocols in carol.properties:

carol.protocols=iiop
RMI IIOP URL
carol.iiop.url=iiop://localhost:2001
carol.iiop.server.port=0 1

carol.iiop.server.sslport=2003 2

carol.iiop.PortableRemoteObjectClass=org.ow2.jonas.registry.carol.delegate.JacORBPRODelegate
 3

1 0 means random port
2 this port is used only if SSL mode is enabled (default configuration = not used).Is used to set

the SSL port of the objects listener
3 delegate used by JOnAS for rmi-iiop protocol.

2.2.1.3. configuring irmi protocol

carol.protocols=irmi
carol.irmi.url=rmi://localhost:1098 1

carol.irmi.server.port=0 2

carol.irmi.interfaces.bind.single=false 3

1 for irmi the default port is 1098
2 exported objects will listen on this port for remote method invocations:0 means random port.

Caution

if the port is set to n the port 'n + 1' will be used by the JMX server.So, for the
firewall configuration, you have to open the port numbers 'n' and 'n+1'

3 if true use only a single interface when creating the registry (specified in carol.irmi.url property).
Default configuration = false(use all interfaces available)

2.2.1.4. enabling clustering of RMI objects

CMI is the component to use for clustering purpose. It is embedded in the component CAROL.

CMI is just composed of wrappers and interceptors and is fully independant of the implementation
of protocol. CMI relies on JGroups [http://www.jgroups.org/javagroupsnew/docs/index.html] group-
communication protocol for ensuring the replication of the cluster view. CMI provides jndi high
availability, the load-balancing and fail-over at the EJB level.

For using CMI with a protocol (in addition to the activation of service cmi), a property must be added
in carol.properties:

carol.jrmp.cmi=true 1

carol.iiop.cmi=true
carol.irmi.cmi=false 2

1 Enable clustering with jrmp
2 Disable clustering with imi

Note

By default, the property is set at true.

2.2.1.5. multi protocol configuration

JOnAS can be configured to use several protocols simultaneously. To do this, just specify a comma-
separated list of protocols in the carol.protocols property of the carol.properties file. For
example:

carol.protocols=iiop,jrmp

http://www.jgroups.org/javagroupsnew/docs/index.html
http://www.jgroups.org/javagroupsnew/docs/index.html

Configuring a JOnAS instance

14

carol.jrmp.url=rmi://localhost:1099
carol.iiop.url=iiop://localhost:2001

Caution

When iiop is used in a multiprotocol configuration, it must appear at the first position
in the protocol list.

2.3. Configuring the logging System
Monolog [http://monolog.objectweb.org/doc/index.html] is the Objectweb solution for logging. It
is not only a new logging implementation but can be seen as a bridge between different logging
implementations. A library that uses the Monolog API can be used with any logging implementation
at runtime.

Furthermore some components of JOnAS like CAROL, JOTM, Tomcat etc... doesn't use the Monolog
API but Jakarta commons loggins or log4j or other implementation. However all these components
will be configured via the JOnAS Monolog configuration file.

2.3.1. Monolog
JOnAS Monolog configuration files are:

• $JONAS_BASE/conf/trace.properties 3

which is the server side Monolog configuration file

• $JONAS_BASE/conf/traceclient.properties

which is used for a client in a client container.

Configuring trace messages inside JOnAS can be done in two ways:

1. Changing the trace.properties file to configure the traces statically, before the JOnAS
Server is run

2. Using the jonas admin command or the JonasAdmin administration tool to configure the traces
dynamically while the JOnAS Server is running. In this case the modification are not persistent
(trace.properties file is not modified).

2.3.2. trace.properties syntax
Applications make logging calls on logger objects.Loggers are organized in a hierarchical namespace
and child loggers may inherit some logging properties from their parents in the namespace. Loggers
allocates messages and passes them to handler for output; they uses logging levels in order to decide
if they are interested in by a particular message.

In trace.properties it is possible to define handlers, loggers, levels:

• handlers

A handler represents an output, is identified by its name, has a type, and has some additional
properties. By default three handlers are used:

• tty is basic standard output on a console

• logf is a handler for printing messages on a file

• mesonly handler used by generation tools for traces without header

http://monolog.objectweb.org/doc/index.html
http://monolog.objectweb.org/doc/index.html

Configuring a JOnAS instance

15

Each handler can define the header it will use, the type of logging (console, file, rolling file), and
the file name.

The handler properties are the following:

• type: is the type of the handler that may be:

• Console : Log stream ends inside System.out or System.err

• File : Log stream is directed into a file

• Rollingfile : A file set is used to roll the logs

• JMX : Logging actions are send to the JMX notification system

• pattern:is the message format. A pattern can be composed of elements. An element is prefixed
by the % character.The possible items:

• %h: the thread name

• %O{1} : the Class name (basename only)

• %M the method name

• %L the line number

• %d the date

• %l the level

• %m the message itself

• %n a new line

• output: is the output filename.

If automatic4 is used, JOnAS will replace this tag with a file pointing to $JONAS_BASE/logs/
<jonas_name_server>-<timestamp>.log

Switch is used for logging either on System.out or System.err depending on the level of
the log

• fileNumber: is the number of file to use (for RollingFile)

• maxSize:is the maximal size of the file (for Rolling file)

Note that another handler, named jmxHandler, can be used to allow to view the recent logs in
the JOnAS administration console. By default the definition of this handler is commented, for
performance reason.

• loggers

Loggers are identified by names that are structured as a tree. The root of the tree is named root.
Each logger is associated with a topic. Topic names are usually based on the package name. Each
logger can define the handler it will use and the trace level (see below). By default loggers inherit
their level from their parents.

By default handlers assigned to the parent logger are automatically assign to child loggers. Setting
'additivity' to false inform the system that the logger will use only its own set of handlers.5

• levels

Configuring a JOnAS instance

16

the trace levels are the following:

• ERROR errors. Should always be printed.

• WARN warning. Should be printed.

• INFO informative messages.

• DEBUG debug messages. Should be printed only for debugging.

2.3.3. default trace.properties file

log.config.classname org.objectweb.util.monolog.wrapper.javaLog.LoggerFactory 1

handler.tty.type Console 2

handler.tty.output Switch 3

handler.tty.pattern %d : %O{1}.%M : %m%n 4

handler.logf.type File 5

handler.logf.output automatic 6

handler.logf.pattern %d : %l : %h : %O{1}.%M : %m%n

logger.root.handler.0 tty 7

logger.root.handler.1 logf 8

logger.root.level INFO 9

logger.org.objectweb.level INFO
logger.org.ow2.level INFO

#logger.org.ow2.jonas.lib.ejb21.level DEBUG 10

handler.mesonly.type Console 11

handler.mesonly.output Switch
handler.mesonly.pattern %m%n

logger.org.ow2.jonas.generators.genic.handler.0 mesonly 12

logger.org.ow2.jonas.generators.genic.additivity false 13

[...]

1 Definition of the wrapper to use: here the java logging API wrapper.
2 Definition of the console handler tty
2 Switch means that the logs will be on System.out or System.err depending of the level of the log.
4 Definition of the message format. here it contains the date followed by ':' the basename of the

class followed by '.' the method name followed by ':' the message itself terminated by newline.
5 Definition of the file handler logf
6 Logs are in a file whose name is $JONAS_BASE/logs/<jonas_name_server>-

<timestamp>.log
7 Definition of the root logger. It uses handler tty
8 Definition of the root logger: It uses also handler logf
9 Definition of the root logger: level INFO is used for all child loggers if there is no overriden

definition
10 This line must be uncommented for setting DEBUG level for the logger used in the jonas ejb21

module
11 Definition of the console handler mesonly used by generator tool, such as GenIC, which want

to log messages without headers
12 Definition of the handler used by the logger org.ow2.jonas.generators
13 This logger wants to use its own handler.

2.3.4. Tips for setting loggers for JOnAS

When a problem occurs it may be worth to set some debugging traces in the JOnAS server. It is not
easy to know which logger to set to obtain the pertinent traces that may help the debbugging process.

Configuring a JOnAS instance

17

The trace.properties file contains several commented lines prepared to set loggers in DEBUG
level.

Usually the name of loggers are related to the java package name in which it is used.

• To set debug traces of the EJB2 container uncomment one or more lines related to logger
org.ow2.jonas.lib.ejb2 for example:

logger.org.ow2.jonas.lib.ejb21.interp.level DEBUG
logger.org.ow2.jonas.lib.ejb21.synchro.level DEBUG
logger.org.ow2.jonas.lib.ejb21.tx.level DEBUG

• To set traces related to resource adapters:

logger.org.ow2.jonas.jca.level DEBUG
logger.org.ow2.jonas.jca.pool.level DEBUG

• To set traces into the CAROL library::

logger.org.ow2.carol.level DEBUG

• To set traces in JORAM:

logger.fr.dyade.aaa.level DEBUG (for the MOM)

for the JORAM resource adapter:
logger.org.objectweb.joram.client.jms.Client.level DEBUG
logger.org.objectweb.joram.client.connector.Adapter.level DEBUG

• To set traces in Tomcat:

• for all web application :

logger.org.apache.catalina.core.ContainerBase.[jonas].[localhost].level DEBUG

jonas is the attribute name of the element Engine in $JONAS_BASE/conf/tomcat6-server.xml

localhost is the attribute name of the element Host in $JONAS_BASE/conf/tomcat6-server.xml

• for a particular web application :

logger.org.apache.catalina.core.containerBase.[jonas].[localhost].[jonasAdmin].level
 DEBUG

jonas is the attribute name of the element Engine in $JONAS_BASE/conf/tomcat6-server.xml

localhost is the attribute name of the element host in $JONAS_BASE/conf/tomcat6-server.xml

jonasAdmin is the name of the web application

Note

the attributes debug in elements of $JONAS_BASE/conf/tomcat6-server.xml are not
used anymore in Tomcat.

• There are a lot of traces possible for management, discovery, jtm, clustering, mail, ear,...

Configuring a JOnAS instance

18

2.3.5. Logging with particular log systems

2.3.5.1. java logging API

If Monolog is configured to use the JDK logger it will replace the JDK logger implementation with
its own implementation and so all JDK logs are intercepted by Monolog. By default Monolog is
configured to use the JDK logger.

2.3.5.2. Jakarta commons logging

There is no special configuration file for Jakarta commons login.If it is used on top of the java logging
API it is the same case than the previous section.

2.3.5.3. log4j

JOnAS don't provide the corresponding jar file so, log4j must be packaged (.jar file and
log4j.properties) in any application that want to use it. The log4j.properties file must
be configured correctly.

If log4j is used by several applications it is possible to centralize the log4j configuration by putting
log4j.properties in $JONAS_BASE/conf and log4j jar file in $JONAS_BASE/lib/commons.

2.4. Configuring JOnAS Services
Here is the list of possible services

registry,jmx,security,jtm,db,mail,wc,dbm,wm,resource,cmi,ha,versioning,ejb2,ejb3,jaxrpc,jaxws,web,ear,depmonitor,discovery,resourcemonitor,smartclient,wsdl-
publisher

In this chapter we will describe how to configure each service in the jonas.properties file.

2.4.1. cmi service configuration

The configuration of the cmi service is available through the file $JONAS_BASE/conf/cmi-
config.xml.

The CMI service can be configured in two modes:

• server mode with a cluster view manager created locally, i.e. with a local instance of a replicated
CMI registry.

• client mode without a local cluster view manager, in this case a list of providers urls (i.e. a list of
cluster view manager urls) is given for accessing to the remote CMI registries.

The server mode is simpler to configure, the client mode requires to define statically a list of providers
urls. The server mode starts a Group Communication Protocol instance (e.g. JGroups) and thus
increases the resources consumption compare to the client mode.

Note

The CMI configuration file may contain two parts: a server element which
corresponds to the server mode configuration and a client element for the client mode
configuration. If the two are present, only the server element is loaded which means
that the server mode is configured.

Configuring a JOnAS instance

19

2.4.1.1. Server mode configuration

The server element contains the following elements:

Example 2.1. Configuring the cmi service in the server mode

<cmi xmlns="http://org.ow2.cmi.controller.common"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jgroups="http://org.ow2.cmi.controller.server.impl.jgroups">
 <server>
 <jndi> 1

 <protocol name="jrmp" noCmi="false" />
 </jndi>
 <viewManager 2

 class="org.ow2.cmi.controller.server.impl.jgroups.JGroupsClusterViewManager"> 3

 <jgroups:config 4

 delayToRefresh="60000" 5

 loadFactor="100" 6

 confFileName="jgroups-cmi.xml" 7

 recoTimeout="30000" 8

 groupName="G1"> 9

 <components> 10

 <event />
 </components>
 </jgroups:config>
 </viewManager>
 </server>
</cmi>

1 jndi element - optional. Enable to specify that a protocol must not be clustered with CMI
(administration uses, ...). Here, the clustering of jrmp protocol can be disabled by setting true
to the noCmi attribute.

2 viewManager element - mandatory. Defines the view manager configuration (registry
replication, refresh time, ...).

3 class attribute - mandatory. Specifies the protocol implementation to use for replicating the
view (CMI registry). Here the JGroups implementation is set.

4 jgroups:config element - mandatory. Define the JGroups related parameters.
5 delayToRefresh attribute - optional. Refresh period of the client view (in ms). For example,

it expresses the maximum delay for taking into account a load-balancing parameter update.
6 loadFactor attribute - optional. Specifies the initial load-factor of the current node used in

the weigthed round robin policy.
7 confFileName attribute - mandatory. Specifies the JGroups's stack configuration filename

(found in the $JONAS_BASE/conf directory).
8 recoTimeout attribute - optional. Specifies the reconnection timeout after a shunning or an

error in the group communication protocol (in ms). If the timer expires, an exception is thrown.
9 groupName attribute - mandatory. Specifies the JGroups channel name used by the CMI cluster

view replication mechanism.
10 components element - mandatory. Enable the events component into CMI. This element must

not be modified.

Note

Refer to the clustering guide [clustering_guide.html#faq.jgroups] for issues related to
JGroups.

2.4.1.2. Client mode configuration

The client element contains the following elements:

clustering_guide.html#faq.jgroups
clustering_guide.html#faq.jgroups

Configuring a JOnAS instance

20

Example 2.2. Configuring the cmi service in the client mode

<cmi xmlns="http://org.ow2.cmi.controller.common"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <client noCmi="false"> 1

 <jndi> 2

 <protocol name="jrmp">
 <providerUrls>
 <providerUrl>rmi://localhost:1099</providerUrl>
 <providerUrl>rmi://localhost:2001</providerUrl>
 </providerUrls>
 </protocol>
 </jndi>
 </client>
</cmi>

1 noCmi attribute - optional. Enable to specify that CMI must be disabled.
2 jndi element - mandatory. Specify a list of providers URLs for a given protocol. It is not

necessary to set the whole list of cluster members, a subset is enough. However for ensuring high
availability, at least two providers URLs must be mentionned.

2.4.2. db service configuration

The db service is an optional service that can be used to start a java database server in the same JVM
as JOnAS.

By default the database used is HSQLDB. [http://hsqldb.org/]

Here is the part of jonas.properties related to db service:

###################### JOnAS DB service configuration
#
Sets the name of the implementation class of the db service (hsql for example)
jonas.service.db.class org.ow2.jonas.db.hsqldb.HsqlDBServiceImpl
jonas.service.db.port 9001
jonas.service.db.dbname db_jonas
jonas.service.db.users jonas:jonas

Multiple users
#jonas.service.db.users jonas:jonas,login:password

Here it is possible to customize :

• the listening port

• the database name

• By default, the user is named jonas with the password jonas. In order to add new users, the property
jonas.service.db.users needs to be updated by using a comma separated list as follow:

jonas.service.db.users login:password,anotherlogin:password

The database may be used by Java EE component via JDBC resource adapters or via the dbm
service. For the former case the same information (listening port, database name, login,password)
must appear in the JOnAS connector deployment descriptor, in the latter they appear in the
$JONAS_BASE/conf/HSQLDB1.properties. So, if these previous properties must be
changed in jonas.properties, they must be also changed in these files.

The db service has been provided in the jonas distribution mainly to run easily the JOnAS
exemple, without having to set a database first. For most usages, the JOnAS users should remove

http://hsqldb.org/
http://hsqldb.org/

Configuring a JOnAS instance

21

it from the list of services and remove also HSQL1 from jonas.service.dbm.datasources property in
$JONAS_BASE/conf/jonas.properties file.

For users that choose HSQLDB as database it is highly recommended to refer to the Hsqldb
User Guide [http://hsqldb.org/web/hsqlDocsFrame.html]. It is worth to note that the default
configuration file used by HSQLDB server can be found in $JONAS_BASE/work/hsqldb/
jonas/db_jonas.properties directory.

In order to launch several HSQLDB instances, the configuration needs to be duplicated and the new
configuration will be prefixed by jonas.service.<mynewdbservice>.

2.4.3. depmonitor service configuration
The depmonitor service scans periodically some directories in the aim of deploying J2EE applications
or OSGi bundles on a JOnAS server. By default, you have to put the application files into the
$JONAS_BASE/deploy directory in order to deploy them. It is possible to parse other directories
by setting the directories property in the service configuration.

The development attribute in the configuration allows to choose if the depmonitor service is in
development mode or not :

• The deployment monitor can be configured to detect at runtime if an application is added, removed
or changed to respectively deploy it, undeploy it or redeploy it. This functionnality can be useful
during the development phase.

• For a prodution usage of the JOnAS server, this functionnality can be disabled so that the
application files will be deployed only at startup. In this configuration, the jonas admin command
[command_guide.html#commands.jonas.jonasadmin] or the jonasAdmin user interface will be used
to perform deployment actions.

As the parsed directories may contain files that must not be deployed, a list of file exclusions can be
defined.

###################### JOnAS Deployment Monitor
#
Set the name of the implementation class of the depmonitor service
#
jonas.service.depmonitor.class
 org.ow2.jonas.deployablemonitor.DeployableMonitorService

Set the execution mode (three possible values):
- inherit: inherit of the value of the "jonas.development" property
- true : development mode
- false : production mode
jonas.service.depmonitor.development inherit 1

jonas.service.depmonitor.directories 2
List (comma separated) of exclusion patterns (based on names, not directories)
jonas.service.depmonitor.exclusions README 3

Monitor interval in milliseconds
jonas.service.depmonitor.monitorInterval 5000 4

1 If the property value is true, the directories are parsed periodically to detect file addition,
modification or deletion. Else, the directories are parsed only at startup

2 A comma-separated list of directories which contain files to deploy
3 A comma-separated list of file names to exclude
4 Monitor interval in milliseconds between two scans

2.4.4. dbm service configuration
The dbm service (database manager service) allow access to one or more relational databases. It will
create and use DataSource objects. Such a DataSource object must be configured according to the
database that will be used for the persistence of a bean.

http://hsqldb.org/web/hsqlDocsFrame.html
http://hsqldb.org/web/hsqlDocsFrame.html
http://hsqldb.org/web/hsqlDocsFrame.html
command_guide.html#commands.jonas.jonasadmin
command_guide.html#commands.jonas.jonasadmin

Configuring a JOnAS instance

22

Caution

the recommended way to access to databases is to use the resource service deploying
JDBC resource adapter

The dbm service provides a generic driver-wrapper that emulates the XADataSource interface
on a regular JDBC driver.It is important to note that this driver-wrapper does not ensure a real
two-phase commit for distributed database transactions. When it is necessary to use a JDBC2-XA-
compliant driver access to the databases must be done via a JDBC resource adapter XA compliant
(more information can be found in Section 2.6, “Configuring JDBC Resource Adapters”

Here is the part of jonas.properties related to dbm service:

###################### JOnAS DBM Database service configuration
#
Set the name of the implementation class of the dbm service
jonas.service.dbm.class org.ow2.jonas.dbm.internal.JOnASDataBaseManagerService

Set the jonas DataSources. This enables the JOnAS server to load
the data dources, to load related jdbc drivers, and to register the data
sources into JNDI.
This property is set with a coma-separated list of Datasource properties
file names (without the '.properties' suffix).
Ex: Oracle1,InstantDB1 (while the Datasources properties file names are
Oracle1.properties and InstantDB1.properties)
jonas.service.dbm.datasources HSQL1

For the dbm service it is possible to:

• set a list of datasource names via property jonas.service.dbm.datasources.

for each name XX appearing in this list a XX.properties file must exist in $JONAS_BASE/
conf

Access to a particular database via dbm service is configured in datasource.properties files that must
be located in $JONAS_BASE/conf.

2.4.4.1. Datasource.properties files

In the JOnAS distribution several templates of datasource.properties files are provided one for Oracle,
PostgreSQL, Sybase, DB2, MySQL, HSQLDB, InterBase, FirebirdSQL, Mckoi SQL, InstantDB)
respectively in Oracle1.properties, PostgreSQL1.properties etc...

A complete description of the datasource.properies file can be found inSection 2.8, “Configuring
JDBC DataSources”

2.4.5. discovery service configuration
The role of the discovery service is to enable dynamic domain management. Recall that domain
management means management of all the servers running in the domain, from the common
administration point represented by a master server.

The discovery service allows a master to detect servers starting and stopping in the domain. Moreover,
a master can discover servers there were already running in the domain when it started.

The discovery service implements a greeting mechanism to enforce servers' name unicity in the
domain. This mechanism prevents starting a new server in the domain, if a server having the same
name is already running in the domain.

There are two available implementations for the discovery service: one based on IP multicast, the other
based on JGroups. The former, introduced in JOnAS 4, is deprecated. The latter, has the advantage
to allow for cluster daemons detection.

All servers and in the domain must choose the same implementation. The choice is made upon the
implementation class name:

Configuring a JOnAS instance

23

###################### JOnAS Discovery service
#
Set the name of the implementation class and initialization parameters
JGropus implementation
jonas.service.discovery.class=org.ow2.jonas.discovery.jgroups.JgroupsDiscoveryServiceImpl
Uncomment this to set Multicast implementation
#jonas.service.discovery.class=org.ow2.jonas.discovery.internal.MulticastDiscoveryServiceImpl

2.4.5.1. Configuration for IP multicast based implementation

You have to provide initialization parameters in jonas.properties file for:

• Multicast address and port. These must be identical for all servers in the domain. Use properties:

• jonas.service.discovery.multicast.address

• jonas.service.discovery.multicast.port

beware that multicast adresses must be consequently allocated through the network.

• The time-to-live for packets: use property:

• jonas.service.discovery.ttl

this parameter indicates the number of gateway hops for packets.

• if ttl = 0 the discovery scope is the host (multicast packet aren't routed to network interfaces).

• if ttl =1 the discovery scope is limited to the subnetworks the host is attached to (multicast packets
cross the network interfaces but will be discarded by the next gateway).

• if ttl =N>1 the discovery packets may cross N-1 gateways (provided that these gateways are
configured to propagate multicast packets).

• In the case of a master server, the jonas.service.discovery.source.port property must be set with an
available port number.

• The greeting mechanism. Use properties:

• jonas.service.discovery.greeting.port

• jonas.service.discovery.greeting.timeout

Note that two servers on the same host must have different values in greeting.port property.

Example:

jonas.service.discovery.multicast.address=224.224.224.224
jonas.service.discovery.multicast.port=9080
jonas.service.discovery.ttl=1
For a master server, configure the client source port with this property
jonas.service.discovery.source.port=9888

A multicast greeting message is sent out when discovery service is started.
The starting server listens at the port jonas.service.discovery.greeting.port
(default 9899) for a response for jonas.service.discovery.greeting.timeout miliseconds
(default 1000 ms). If a pre-existing server has the same server name as this one,
this server's discovery service will be terminated.
jonas.service.discovery.greeting.port=9899
jonas.service.discovery.greeting.timeout=1000

2.4.5.2. Configuration for JGroups based implementation

JGropups configuration being more complex, a specific configuration file have to be used. The name
of this file is given by the jonas.service.discovery.jgroups.conf property. Two other properties have
to be initialized:

Configuring a JOnAS instance

24

• The name of the JGroups group used by the the discovery service to exchange messages.

• jonas.service.discovery.group.name

• The reconnection timeout for the JGroups channel.

• jonas.service.discovery.group.reconnection.timeout

Example:

jonas.service.discovery.jgroups.conf=jgroups-discovery.xml
jonas.service.discovery.group.name=JGroupsDiscovery
jonas.service.discovery.group.reconnection.timeout=5000

You can find in JOnAS distribution, under JONAS_ROOT/conf, a jgroups-discovery.xml
file. This file containes a JGroups stack configuration for the UDP protocol.

Note

Refer to the clustering guide [clustering_guide.html#faq.jgroups] for issues related to
JGroups.

2.4.5.3. Cluster deamon configuration for discovery

In order to be detected by a master server, a cluster daemon has to be properly configured. This is
achieved by using a discovery entry in the clusterd.xml configuration file. The configuration
properies are:

• The JGroups group name

• The JGroups stack configuration file name

• A boolean allowing to activate (if true) the discovery.

Example:

 <discovery>
 <group-name>JGroupsDiscovery</group-name>
 <stack-file>jgroups-discovery.xml</stack-file>
 <start-up>true</start-up>
 </discovery>

2.4.6. ear service configuration
The ear service allows deployment of complete Java EE applications (including ejb-jar, war and
rar files packed in an ear file). This service is based on the web service for deploying the included
wars, the ejb2 or ejb3 service for deploying the EJB containers for the included ejb-jars and the
resource service for deploying the included rars.

In development mode, as all other Java EE archives ear archives can be deployed automatically as soon
as they are copied under $JONAS_BASE/deploy (or under another configuration-defined directory)
and undeployed as soon as they has been removed from this location.

Here is the part of jonas.properties concerning the ear service:

###################### JOnAS EAR service configuration
#
Set the name of the implementation class of the ear service.
jonas.service.ear.class org.ow2.jonas.ear.internal.JOnASEARService

Set the XML deployment descriptors parsing mode for the EAR service
(with or without validation).
jonas.service.ear.parsingwithvalidation true 1

clustering_guide.html#faq.jgroups
clustering_guide.html#faq.jgroups

Configuring a JOnAS instance

25

Generate stubs for all EJBs that may be accessed from the application
In almost all cases, this is not required to be enabled as stubs can be found.
jonas.service.ear.genstub true

Create a child classloader when deploying EJB3 of the EAR
jonas.service.ear.useEJB3ChildClassloader true

1 Set or not the XML validation at the deployment descriptor parsing time

2.4.7. ejb2 Service configuration
This service provides containers for EJB2.1 components.

An EJB container can be created from an ejb-jar file using one of the following possibilities:

• The ejb-jar file has been copied under $JONAS_BASE/deploy

• The ejb-jar file is packaged inside an ear file as a component of a Java EE application. The
container will be created when the Java EE application will be deployed via the ear service.

• EJB containers may be dynamically created from ejb-jar files using the JonasAdmin tool.

• EJB containers may be dynamically created from ejb-jar files using the command jonas admin:

jonas admin -a <some-dir>/sb.jar

The ejb service can (and by default does) provide monitoring options. Monitoring provides the
following values at a per-EJB basis for stateful and stateless beans:

• Number of calls done on all methods.

• Total business time, i.e. the time spent executing business (applicative) code.

• Total time, i.e. the total time spent executing code (business code + container code).

The warningThreshold option can be used to generate a warning each time a method takes more than
warningThreshold milliseconds to execute. By default, warningThreshold is set to 20 seconds.

Here is the part of jonas.properties concerning the ejb2 service:

###################### JOnAS EJB 2 Container service configuration
#
Set the name of the implementation class of the ejb2 service
jonas.service.ejb2.class org.ow2.jonas.ejb2.internal.JOnASEJBService

Set the XML deployment descriptors parsing mode (with or without validation)
jonas.service.ejb2.parsingwithvalidation true

If enabled, the GenIC tool will be called if :
- JOnAS version of the ejb-jar is not the same version than the running JOnAS instance
- Stubs/Skels stored in the ejb-jar are not the same than the JOnAS current protocols.
By default, this is enabled
jonas.service.ejb2.auto-genic true

Arguments for the auto GenIC (-invokecmd, -verbose, etc.)
jonas.service.ejb2.auto-genic.args -invokecmd

Note: these two settings can be overriden by the EJB descriptor.
#
If EJB monitoring is enabled, statistics about method call times will be
collected. This is a very lightweight measurement and should not have much
impact on performance.
jonas.service.ejb2.monitoringEnabled true
If EJB monitoring is enabled, this value indicates after how many
milliseconds spent executing an EJB method a warning message should be
displayed. If 0, no warning will ever be displayed.
jonas.service.ejb2.warningThreshold 20000

For customizing the ejb2 service it is possible to:

Configuring a JOnAS instance

26

• Set or not the XML validation at the deployment descriptor parsing time

• Set or not the automatic generation via the GenIC tool

• Specify the arguments to pass to the GenIC tool

2.4.8. ejb3 service configuration
The ejb3 service provides EJB 3 container support. This service is provided by the EasyBeans [http://
www.easybeans.net] container.

The declaration of the ejb3 service is done in the jonas.properties file.

###################### JOnAS EJB 3 container service configuration
#
Set the name of the implementation class of the EJB 3 service.
jonas.service.ejb3.class org.ow2.jonas.ejb.easybeans.EasyBeansService

List (comma separated) of JPA providers: hibernate,eclipselink
jonas.service.ejb3.jpa.providers hibernate

The jonas.service.ejb3.jpa.providers property allows to define a list of JPA
providers that could be used by EasyBeans [http://www.easybeans.net]. For the moment, Hibernate
[http://www.hibernate.org] and EclipseLink [http://www.eclipse.org/eclipselink] JPA providers are
available.

EasyBeans [http://www.easybeans.net] has its own configuration file that is located in
JONAS_BASE/conf folder. The name of the configuration file is easybeans-jonas.xml.

By default, EasyBeans [http://www.easybeans.net] is using only services provided by JOnAS. Thus,
no additional components are required for starting EasyBeans [http://www.easybeans.net].

<?xml version="1.0" encoding="UTF-8"?>
<easybeans xmlns="http://org.ow2.easybeans.server">

 <!-- No infinite loop (managed by JOnAS): wait="false"
 Enable MBeans: mbeans="true"
 Disable the naming: naming="false"
 Use JOnAS JACC provider: jacc="false"
 Using JOnAS monitoring: scanning="false"
 Using JOnAS JMX Connector: connector="false"
 Disable Deployer and J2EEServer MBeans: deployer="false" & j2eeserver="false"
 -->
 <config
 wait="false"
 mbeans="true"
 naming="false"
 jacc="false"
 scanning="false"
 connector="false"
 deployer="false"
 j2eeserver="false" />

 <!-- Define components that will be started at runtime -->
 <components>
 <!-- All components are launched by JOnAS -->

 <!-- RMI component will be used to access some of JNDI properties -->
 <!-- But as there are no protocols, no registry is launched. -->
 <rmi />

 <!-- Start smartclient server with a link to the rmi component-->
 <!--smart-server port="2503" rmi="#rmi" /-->
 </components>
</easybeans>

The <config> element describes EasyBeans [http://www.easybeans.net] configuration properties
that may be different for each application server. The settings provided in this file are the JOnAS
settings and they shouldn't be modified in almost any cases.

http://www.easybeans.net
http://www.easybeans.net
http://www.easybeans.net
http://www.easybeans.net
http://www.easybeans.net
http://www.hibernate.org
http://www.hibernate.org
http://www.eclipse.org/eclipselink
http://www.eclipse.org/eclipselink
http://www.easybeans.net
http://www.easybeans.net
http://www.easybeans.net
http://www.easybeans.net
http://www.easybeans.net
http://www.easybeans.net
http://www.easybeans.net
http://www.easybeans.net

Configuring a JOnAS instance

27

The <component> element defines the EasyBeans [http://www.easybeans.net] components that will
be started at the startup. Here EasyBeans [http://www.easybeans.net] is integrated in JOnAS, it will
thus use JOnAS services like transaction, security, naming, registry.

The smart client component provides a mechanism for downloading classes missing on the client side,
from the server side. This allows to have a very small library on the client side and it downloads
classes on demand. When this component is enabled, the listening port can be configured. More
documentation on the Smart component can be found in EasyBeans documentation.

2.4.9. ha service configuration
The ha (High Availability) service is required in order to replicate stateful session beans (SFSBs).

The ha service uses JGroups as a group communication protocol (GCP).

Here is the part of jonas.properties related to ha service:

###################### JOnAS HA service configuration
#
Set the name of the implementation class of the HA service.
jonas.service.ha.class org.ow2.jonas.ha.internal.HaServiceImpl

Set the JGroups configuration file name
jonas.service.ha.jgroups.conf jgroups-ha.xml 1

Set the JGroups group name
jonas.service.ha.jgroups.groupname jonas-rep 2

Set the SFSB backup info timeout. The info stored in the backup node is removed when the
 timer expires.
jonas.service.ha.gc.period 600 3

Set the datasource for the tx table
jonas.service.ha.datasource jdbc_1 4

Reconnection timeout for JGroups Channel, if it's closed on request.
jonas.service.ha.reconnection.timeout 5000 5

1 Set the name of the JGroups configuration file.
2 Set the name of the JGroups group.
3 Set the period of time (in seconds) the system waits before cleaning useless replication

information.
4 Set the JNDI name of the datasource corresponding to the database where is located the

transaction table used by the replication mechanism.
5 Set the delay to wait for a reconnection.

Note

Refer to the clustering guide [clustering_guide.html#faq.jgroups] for issues related to
JGroups.

2.4.10. jaxrpc service configuration
The jaxrpc service provides a JAX-RPC 1.1 support for applications using J2EE 1.4 style webservices.
J2EE 1.4 style webservices are POJO or Stateless EJB 2.x exposed as webservices using old school
deployment descriptors (WEB-INF/webservices.xml or META-INF/webservices.xml)

It is based on the Axis 1.x implementation.

Here is the part of jonas.properties concerning the jaxrpc service:

###################### JOnAS JAX-RPC service configuration
#
Set the name of the implementation class of the jaxrpc service.
jonas.service.jaxrpc.class org.ow2.jonas.ws.axis.AxisService

http://www.easybeans.net
http://www.easybeans.net
http://www.easybeans.net
http://www.easybeans.net
clustering_guide.html#faq.jgroups
clustering_guide.html#faq.jgroups

Configuring a JOnAS instance

28

Set the XML deployment descriptors parsing mode for the jaxrpc service (with or without
 validation).
jonas.service.jaxrpc.parsingwithvalidation true

Set the Generator to use with wsgen
jonas.service.jaxrpc.wsgen.generator.factory
 org.ow2.jonas.generators.wsgen.generator.ews.EWSGeneratorFactory

Set the prefix that will be used to compute URL endpoints for web services
Example of prefix: http://www.mydomain.com:8888
jonas.service.jaxrpc.url-prefix

Set automatic WsGen mode on/off
If set to 'true', WsGen will automatically be applied to all deployed archives (EjbJars,
 Webapps, Applications)
jonas.service.jaxrpc.auto-wsgen.engaged true

It is possible to :

• Set or not the XML validation at the deployment descriptor parsing time: property
jonas.service.jaxrpc.parsingwithvalidation

• Enforce the URL to be used for the deployed endpoints: property:jonas.service.jaxrpc.url-prefix

This is interesting when there is a cluster of JOnAS instances and a unique HTTP frontend for load
balancing. For example the administrator wants all your web services endpoint to use the http://
www.mydomain.com:8888 URL instead of the usual http://localhost:9000 (that has
a meaning only at local level).

• Enable or not to run the WSGen tool on ejb-jar, war, ear and application client at deployment time.

2.4.11. jaxws service configuration
The jaxws service provides a JAX-WS 2.0 support for applications using Java EE 5 style webservices.

It is required to declare it if the configured JOnAS instance have to deploy Java EE application or
modules that contains @WebService annotated classes (for the service endpoints) or if they contains
@WebServiceRef / @WebServiceRefs (for client side usage of a webservice).

Note

If this service is not activated and deployed applications are using JAX-WS
2.0 APIs, @WebService annotated POJO or EJB 3.0 will not be exposed as
webservices and @WebServiceRef fields/methods will not be injected (may conduct
to NullPointerExceptions).

Here is the part of jonas.properties concerning the jaxws service:

###################### JOnAS JAX-WS 2.x service configuration
#
Set the name of the implementation class of the jaxws service
jonas.service.jaxws.class org.ow2.jonas.ws.cxf.CXFService

2.4.12. jmx service configuration
The jmx service is a mandatory service, so its automatically started in order to administrate or
instrument the JOnAS server. It uses the JMX extensions provided by the current Java EE platform.

The jmx service creates at stratup, one or more JMX Remote connectors (one for each protocol
configured in CAROL, seeSection 2.2, “Configuring the communication protocol and JNDI”). This
allows remote management for JMX-based administration applications. A connector's address is based
on the corresponding protocol's URL, the protocol name and the server name.

Let's consider the default CAROL configuration, where the RMI/JRMP protocol is used with the
following URL:

Configuring a JOnAS instance

29

carol.protocols=jrmp
carol.jrmp.url=rmi://localhost:1099

The address of the JMX Remote connector for a server named myJonas is:

service:jmx:rmi:///jndi/rmi://localhost:1099/jrmpconnector_myJonas

The jmx service can be started in secured or non-secured mode:

• In non-secured mode, the JOnAS server accepts JMX connections directly, without requiring the
client to provide any credentials (no user names or passwords). This implies that any person that
has access to the JOnAS server's JMX port (by default, its RMI/JRMP port) can also take any action
on the server (including remote code execution).

• In secured mode, any client that connects to the JOnAS server via JMX must provide a valid user
name and password.

• When connecting, the client provides a user name and password by setting the
JMXConnector.CREDENTIALS key of the properties passed to the connection (env variable
of the JMXConnector.connect method).

This user name and password is always directly transmitted to the JOnAS server the client is
connecting to, and it's that server's decision whether:

• The user name and password is considered as being valid, therefore the connection will be
accepted. This phase is called Authentication .

• That user has the right of accessing a certain method of a certain instance. This phase is called
Authorization.

• For authentication, you can use any JAAS LoginModule of the JMX extensions provided by your
platform.

For authorization, you can use any Security Manager provided by your platform.

Here is the part of jonas.properties concerning the jmx service:

###################### JOnAS JMX service configuration
#
Set the name of the implementation class of the JMX service
jonas.service.jmx.class org.ow2.jonas.jmx.internal.JOnASJMXService

Set to true if the JMXRemote interface should require the client to provide
authentication information. That information is provided when establishing
the JMX connection, using the JMXConnector.CREDENTIALS key.
#
Note that if you enable JMX security for a server, all clients (including
any administration tool such as the domain master) connecting to this
instance via JMX must provide a valid user name and password.
jonas.service.jmx.secured false

If jonas.service.jmx.secured is set to true, defines the authentication
method and the method's parameter. For example, to use file-based
authentication using the conf/jmx.passwords file, define:
jonas.service.jmx.authentication.method jmx.remote.x.password.file
jonas.service.jmx.authentication.parameter conf/jmx.passwords
You are free to use the authentication provider you wish.
jonas.service.jmx.authentication.method jmx.remote.x.password.file
jonas.service.jmx.authentication.parameter conf/jmx.passwords
You may for example choose to use JAAS LoginModule for authentication.
In this case define the used configuration in the JAAS configuration file
using the jonas.service.jmx.authentication.parameter:
jonas.service.jmx.authentication.method jmx.remote.x.login.config
jonas.service.jmx.authentication.parameter jaas-jmx

If jonas.service.jmx.secured is set to true, defines the authorization
method and the method's parameter. For example, to use file-based
authorization using the conf/jmx.access file, define:
jonas.service.jmx.authorization.method jmx.remote.x.access.file

Configuring a JOnAS instance

30

jonas.service.jmx.authorization.parameter conf/jmx.access
You are free to use the authorization provider you wish.
jonas.service.jmx.authorization.method jmx.remote.x.access.file
jonas.service.jmx.authorization.parameter conf/jmx.access
You may for example choose to use role-based authorization manager
configured using conf/jmx.rolebased.access file. In this case, define:
jonas.service.jmx.authorization.method jmx.remote.x.access.rolebased.file
jonas.service.jmx.authorization.parameter conf/jmx.rolebased.access

2.4.13. jtm service configuration
The jtm service is used by ejb2 service in order to provide transaction management for EJB
components as defined in the deployment descriptor. The jtm service uses a Transaction manager
that may be local or may be launched in another JVM (a remote Transaction manager). Typically,
when there are several JOnAS servers working together, one jtm service must be considered as the
master and the others as slaves. The slaves must be configured as if they were working with a remote
Transaction manager.

By default JOTM [http://jotm.objectweb.org/] is the Transaction manager used.

Here is the part of jonas.properties concerning the jtm service:

###################### JOnAS JTM Transaction service configuration
#
Set the name of the implementation class of the jtm service
jonas.service.jtm.class org.ow2.jonas.tm.jotm.JOTMTransactionService

Set the Transaction Manager launching mode.
If set to 'true', TM is remote: TM must be already launched in an other JVM.
If set to 'false', TM is local: TM is going to run into the same JVM
than the jonas Server.
jonas.service.jtm.remote false

Set the default transaction timeout, in seconds.
jonas.service.jtm.timeout 60

For customizing the jtm service It is possible to

• Indicate if the Transaction Manager used in this instance is collocated or remote:
jonas.service.jtm.remote property

• Setting the value of the transaction time-out, in seconds: jonas.service.jtm.timeout property

2.4.14. mail service configuration
The mail service is an optional service that may be used to send emails.

It is based on JavaMail and on JavaBeans Activation Framework (JAF) API.The default
implementation of the mail service rely on the GNUMail implementation of these API.

A mail factory is required in order to send or receive mails. JOnAS provides two types of mail
factories: javax.mail.Session and javax.mail.internet.MimePartDataSource.
MimePartDataSource factories allow mail to be sent with a subject and the recipients already set.

Mail factory objects must be configured according to their type. The subsections that follow briefly
describe how to configure Session and MimePartDataSource mail factory objects, in order
to run the SessionMailer SessionBean and the MimePartDSMailer SessionBean delivered with the
platform.

Here is the part of jonas.properties concerning the mail service:

###################### JOnAS Mail service configuration
#
Set the name of the implementation class of the mail service

http://jotm.objectweb.org/
http://jotm.objectweb.org/

Configuring a JOnAS instance

31

jonas.service.mail.class org.ow2.jonas.mail.internal.JOnASMailService

Set the jonas mail factories.
This property is set with a coma-separated list of MailFactory properties
file names (without the '.properties' suffix).
Ex: MailSession1,MailMimePartDS1 (while the properties file names are
MailSession1.properties and MailMimePartDS1.properties)
jonas.service.mail.factories

Mail factory objects created by JOnAS must be given a name. For example, consider
two factories called MailSession1 and MailMimePartDS1. Each factory must have a
configuration file whose name is the name of the factory with the .properties extension
(MailSession1.properties for the MailSession1 factory).

For this example jonas.service.mail.factories property must be set to:

jonas.service.mail.factories MailSession1,MailMimePartDS1

2.4.14.1. Configuring Session mail factory

A template MailSession1.properties file is supplied in $JONAS_BASE/conf. It contains
two mandatory properties :

#Factory Name/Type
mail.factory.name mailSession_1
mail.factory.type javax.mail.Session

The JNDI name of the mail factory object is mailSession_1. This template must be updated with values
appropriate to your installation. See the section "Configuring a mail factory" below for the list of
available properties.

2.4.14.2. Configuring MimePartDataSource mail factory

A template MimePartDS1.properties is supplied in $JONAS_BASE/conf. It contains two
mandatory properties :

#Factory Name/Type
mail.factory.name mailMimePartDS_1
mail.factory.type javax.mail.internet.MimePartDataSource

The JNDI name of the mail factory object is mailMimePartDS_1. This template must be updated with
values appropriate to your installation. See the section "Configuring a mail factory" below for the list
of available properties.

2.4.14.3. Configuring a mail factory

Here are the possible properties

• Required properties:

Property name Description

mail.factory.name JNDI name of the mail factory

mail.factory.type The type of the factory. This
property can be javax.mail.Session or
javax.mail.internet.MimePartDataSource.

• Optional properties: Authentication properties

Property name Description

mail.authentication.username Set the username for the authentication.

Configuring a JOnAS instance

32

mail.authentication.password Set the password for the authentication.

• Optional properties: javax.mail.Session.properties (refer to JavaMail documentation for more
information)

Property name Description

mail.debug The initial debug mode. Default is false.

mail.from The return email address of the current user, used
by the InternetAddress method getLocalAddress.

mail.mime.address.strict The MimeMessage class uses the InternetAddress
method parseHeader to parse headers in
messages. This property controls the strict flag
passed to the parseHeader method. The default is
true.

mail.host The default host name of the mail server
for both Stores and Transports. Used if the
mail.protocol.host property is not set.

mail.store.protocol Specifies the default message access protocol.
The Session method getStore() returns a Store
object that implements this protocol. By default
the first Store provider in the configuration files
is returned.

mail.transport.protocol Specifies the default message access protocol.
The Session method getTransport() returns a
Transport object that implements this protocol.
By default, the first Transport provider in the
configuration files is returned.

mail.user The default user name to use when connecting
to the mail server. Used if the mail.protocol.user
property is not set.

mail.<protocol>.class Specifies the fully- qualified class name of the
provider for the specified protocol. Used in cases
where more than one provider for a given protocol
exists; this property can be used to specify which
provider to use by default. The provider must still
be listed in a configuration file.

mail.<protocol>.host The host name of the mail server for the specified
protocol. Overrides the mail.host property.

mail.<protocol>.port The port number of the mail server for the
specified protocol. If not specified, the protocol's
default port number is used.

mail.<protocol>.user The user name to use when connecting to mail
servers using the specified protocol. Overrides the
mail.user property.

• Optional properties:MimePartDataSource properties (Only used if mail.factory.type is
javax.mail.internet.MimePartDataSource)

Property name Description

mail.to Set the list of primary recipients ("to") of the
message.

mail.cc Set the list of Carbon Copy recipients ("cc") of the
message. mail.bcc

Configuring a JOnAS instance

33

mail.bcc Set the list of Blind Carbon Copy recipients
("bcc") of the message.

mail.subject Set the subject of the message.

2.4.15. registry service configuration
This service is used for accessing the RMI registry, CMI registry, or the CosNaming (RMI/IIOP),
depending on the configuration of communication protocols specified in carol.properties,
refer to Section 2.2, “Configuring the communication protocol and JNDI” .

Here is the part of jonas.properties file concerning the registry service.

###################### JOnAS Registry service configuration
#
Set the name of the implementation class of the Registry service
jonas.service.registry.class org.ow2.jonas.registry.carol.CarolRegistryService

Set the Registry launching mode
If set to 'automatic', the registry is launched in the same JVM as Application Server,
if it's not already started.
If set to 'collocated', the registry is launched in the same JVM as Application Server
If set to 'remote', the registry has to be launched before in a separate JVM
jonas.service.registry.mode collocated

2.4.16. resource service configuration
The resource service must be started when Java EE components require access to an external
Enterprise Information Systems. The standard way to do this is to use a third party software component
called Resource Adapter.

The role of the Resource service is to deploy the Resource Adapters in the JOnAS server, i.e., configure
it in the operational environment and register in JNDI name space a connection factory instance
that can be looked up by the application components. The resource service implements the Java EE
Connector Architecture 1.56.

Resource Adapter are packaged in Java EE rar archives.

In development mode, as all other Java EE archives rar archives can be deployed automatically as soon
as they are copied under $JONAS_BASE/deploy and undeployed as soon as they has been removed
from this location.

For more information see Section 2.4.3, “depmonitor service configuration”.

The other ways to deploy rar archives is

• to use the jonasAdmin console.

• to use the command jonas admin:

jonas admin -a <mydir>/myrar.rar

A JOnAS specific resource adapter configuration xml file must be included in each resource adapter.
This file replicates the values of all configuration properties declared in the deployment descriptor
for the resource adapter. Refer to Defining the JOnAS Connector Deployment Descriptor in J2EE
Connector Programmer's Guide [connector_pg.html] for additional information.

Here is the part of jonas.properties related to resource service:

6There is no real acronym for this specification JCA was the acronym for Java Cryptography Architecture . In the rest of this document we
will use J2CA

connector_pg.html
connector_pg.html
connector_pg.html

Configuring a JOnAS instance

34

###################### JOnAS J2CA resource service configuration
#
Set the name of the implementation class of the J2CA resource service
jonas.service.resource.class org.ow2.jonas.resource.internal.JOnASResourceService

The worker thread pool used for all J2CA 1.5 Resource Adapters deployed can be configured in the
Section 2.4.22, “wm service configuration” service.

resource service is mainly used in JOnAS for accessing databases via a JDBC resource adapter (in
this case it replace dbm service) and for providing JMS facilities.

JOnAS provides several JDBC resource adapters and a JMS resource adapter on top of JORAM
[http://joram.objectweb.org/] More information about configuring resource adapters can be found in
Section 2.6, “Configuring JDBC Resource Adapters”

2.4.17. security service configuration
Here is the part of jonas.properties related to security service:

#
###################### JOnAS SECURITY service configuration
#
Set the name of the implementation class of the security service
jonas.service.security.class org.ow2.jonas.security.internal.JonasSecurityServiceImpl

Realm used for CsiV2 authentication
jonas.service.security.csiv2.realm memrlm_1

Realm used for Web Service authentication
jonas.service.security.ws.realm memrlm_1

Registration of realm resources into JNDI
Disable by default so configuration is not available with clients
jonas.service.security.realm.jndi.registration false

Enable security context check on Remote Login Module
jonas.security.context.check false

Path to the keystore file
jonas.security.context.check.keystoreFile /tmp/keystore

Pass used for the keystore file
jonas.security.context.check.keystorePass keystorepass

Alias (stored in the keystore)
jonas.security.context.check.alias FB

In fact properties jonas.service.security.csiv2.realm and jonas.service.security.ws.realm are only
useful for users that use security on top of rmi/iiop or on top of web services . in these case
with memrlm_1 it is possible to make a link to the memomyrealm named memrlm_1 in the
$JONAS_BASE/conf/jonas-realm.xml file and retrieve users name and roles.

Don't forget that for using security the global property jonas.security.propagation to true and that
an important property related to security is jonas.security.manager see Section 2.1.5.1, “Global
properties”

All other security configuration related to JOnAS is done in the file jonas-realm.xml and
security configuration related to web containers, certificate, etc., is done in the appropriate files.
Refer to the subsection Section 2.5, “Configuring Security” for a complete description of security
configuration.

2.4.18. smartclient service configuration
The smartclient lets remote clients download classes and other resources necessary for connecting to
JOnAS services (JNDI context factories, EJB3 interceptors, ...) directly from the JOnAS server they're
dealing with.

http://joram.objectweb.org/
http://joram.objectweb.org/

Configuring a JOnAS instance

35

This way, the heavy clients only need to include a lightweight JAR file for the Smartclient client and
are always guaranteed to have the good versions of all components.

Here is the part of jonas.properties concerning the smartclient service:

###################### JOnAS/EasyBeans Smartclient service configuration
#
Set the name of the implementation class of the smartclient service.
jonas.service.smartclient.class
 org.ow2.jonas.smartclient.internal.SmartclientServiceImpl
port number the Smartclient service listens on
jonas.service.smartclient.port 2503

2.4.19. versioning service configuration

2.4.19.1. About the versioning service

This service has been designed for dynamic redeployment of applications, without any application
downtime and without users' sessions being lost:

• Deployment of a new version of an application does not require the undeployment of any previous
version.

• Users that were on a previous version keep on using that version as long as their session on that
version is active (for example, as long as they have not finished buying items on the previous version
of the online trade web site). This guarantees that no user data will be lost, and that if there is any
problem with the new version the old version is still available instantly.

• New versions of the application can be deployed using various strategies, for instance allow testing
of the new version by a small community to ensure its readiness for production.

The versioning service achieves this by adding virtual contexts to all services that provide support for
versioning. To use the versioning service:

1. Enable the versioning service in jonas.properties

2. Define the Implementation-Version attribute in your deployable file's (whether war, jar or ear)
MANIFEST. Note that:

• ANT, Maven as well as most IDEs can set any MANIFEST attribute automatically.

• If the archive that will be deployed is an ear, the Implementation-Version defined in the
MANIFEST of the ear will be used for all archives the ear contains.

When the versioning service is enabled, application resources (web pages, EJBs, etc.) are accessed
the following way:

• Each versioned application has a user (virtual) address. Each version of an application is renamed
and bound to that virtual address. Each bound version has a policy (that can be changed in time in
order to manage the deployment strategy):

• Private: Can only be accessed by clients that satisfy some prerequisites; for example belong to
a certain IP address group or provide a certain credential.

• Reserved: Not accessible using the virtual address, therefore can only be accessed directly (using
the versioned address).

• Disabled: Only accessible by clients that have been using this version in the past (until their
session expires). This guarantees that users will not lose their session data during a redeployment.

• Default: Version accessed by all clients that don't fit in any other policy.

Configuring a JOnAS instance

36

• A user can access the application resource indirectly (using the virtual address) or directly (using
the versioned address).

• If the user tries to access the application resource indirectly (using the virtual address), the
versioning system:

• First checks if that user is defined as a user that can access a version of the application with the
Private access policy. If that is the case, the user is routed to that private version of the application.

• Then checks if that user already has a session in a version of the application with the Disabled
access policy. If that is the case, the user is routed to that disabled version of the application.

• If neither of these cases are true, routes the user to the version of the application with the Default
access policy. If the application does not define any default version, the user will see "resource
not found" message.

This can be schematized as follows:

The current limitations of the versioning service are:

• Only the Tomcat Web Container supports the versioning service. That support is fully functional,
recognition of users is based on the session ID (via cookie or GET).

• Both EJB2 and EJB3s support the versioning service. That support is fully functional, EJB lookups
in the same EAR always redirect to the same version.

• Web Service support for the versioning service is in design phase.

• The Private context policy has not been implemented.

As this service allows seamless and interruptionless upgrade and test of all applications, it is strongly
recommended for all applications to refer version identifiers in their manifest files. Remember that
ANT, Maven as well as most IDEs can set any MANIFEST attribute automatically.

We will now detail the way versioning works by creating two versions of the Java EE 5 Sample
Application in the JOnAS examples folder: version 1.0.0 and version 1.0.1. Since the application
is an EAR, we only need to refer the version identifier in the EAR file.

2.4.19.2. Focus: versioned Web Applications

When the first version of the EAR is deployed:

• The application gets deployed on the URI /javaee5-earsample-version1.0.0.

Configuring a JOnAS instance

37

• The virtual URI /javaee5-earsample is created.

• The real URI /javaee5-earsample-version1.0.0 gets bound to the virtual URI /javaee5-earsample.

Therefore, when a user accesses the /javaee5-earsample URI, the content seen is the same as the one
on /javaee5-earsample-version1.0.0.

We now deploy the second version of the application, version 1.0.1, via the JOnAS Web Admin panel.
When the second version is deployed, it is bound to the virtual URI as Reserved (this is the default
policy and can be modified via JMX at any time). This means that the only way of accessing the
1.0.1 version of the application is to type as URI /javaee5-earsample-version1.0.1. All visitors of /
javaee5-earsample will still access the version 1.0.0.

To change the access policies of each version of the virtual URI (the only URI end users are expected
to access), go to the list of Web Containers in the JOnAS Web Admin panel. If you set the version
1.0.0 as Disabled and the version 1.0.1 as Default:

• The user that was on /javaee5-earsample when the default version was 1.0.0 will stay on version
1.0.0 until her/his session expires (i.e. the browser window is closed).

• Any user that connects to /javaee5-earsample for the first time will visit version 1.0.1.

2.4.19.3. Focus: versioned EJBs

When the first version of the EAR is deployed:

• All EJBs that register on the JNDI directory register with a prefixed name, which is their original
name prefixed by javaee5_earsample_version1.0.0/. For example, the myStateless bean gets
registered as javaee5_earsample_version1.0.0/myStateless.

• For each EJB, the original JNDI name is also registered and points exactly to the same JNDI link.

Therefore, when a user looks up for the myStateless bean, the reference received is the same as the
one received when javaee5_earsample_version1.0.0/myStateless is looked up.

The behaviours of the Web and EJB services when the version 1.0.1 is deployed are similar, except
for one very important point: when multiple applications are packaged together, the only versions of
the applications they've been tested against are the versions inside the same EAR. Therefore, blindly
accessing the Default version of the EJBs could have unexpected results. This is why the concept of
versioned EJB clients has been created:

• All EJB clients in a versioned EAR automatically become versioned EJB clients. Their target
version is the version of the host EAR, which implies that intra-EAR accesses are always done to
the same version.

• External EJB clients can also specify the versions for the EJB they need to access.

Configuring a JOnAS instance

38

• Non-versioned external EJB clients will access the Private, Reserved, Disabled or Default
versions as usual.

This can be schematized as follows:

As with the versioned Web Applications, to change the access policies of each version of the virtual
JNDI container (which knows the JNDI names end users are expected to access), go to the list of EJB
Containers in the JOnAS Web Admin panel. If you set the version 1.0.0 as Disabled and the version
1.0.1 as Default:

• All clients that know about the versioned JNDI names (remember that this will always be the case
in a versioned EAR application) will always access the version they specify.

• References to myStateless obtained before this operation will stay on version 1.0.0.

• Any user that looks up myStateless for the first time will get a reference to version 1.0.1.

2.4.20. wc service configuration
The wc service allows to clean up periodically the work directory of the JOnAS server. This service
don't need to be defined in the list of JOnAS services as it is automatically started when JOnAS is
in development mode.

During the deployment process of an application, a specific working directory is created and associated
to the application. After a defined time, the clean task tries to delete working directories of applications
which have been undeployed. Note that the clean task is already executed at startup of the JOnAS
server.

Here is the part of jonas.properties concerning the wc service:

###################### JOnAS WorkCleaner service configuration
#
Set the name of the implementation class of the wc service
jonas.service.wc.class org.ow2.jonas.workcleaner.internal.JOnASWorkCleanerService

Set the clean period in seconds
jonas.service.wc.period 300 1

1 Define the period between two executions of the clean task (in seconds)

2.4.21. web service configuration
This service provides containers for the web components used by the Java EE applications.

Configuring a JOnAS instance

39

JOnAS provides two implementations of this service: one for Jetty 6.x, one for Tomcat 6.x. It is
necessary to run this service in order to use the JonasAdmin tool. A web container is created from
a war file.

In development mode, as all other Java EE archives war archives can be deployed automatically
as soon as they are copied under $JONAS_BASE/deploy and undeployed as soon as they has been
removed from this location.

Here is the part of jonas.properties concerning the web service:

#
###################### JOnAS Web container service configuration
#
Set the name of the implementation class of the web container service.
jonas.service.web.class org.ow2.jonas.web.tomcat6.Tomcat6Service
#jonas.service.web.class org.ow2.jonas.web.jetty6.Jetty6Service

Set the XML deployment descriptors parsing mode for the WEB container
service (with or without validation).
jonas.service.web.parsingwithvalidation true 1

If true, the onDemand feature is enabled. A proxy is listening on the http port and will
 make actions like starting or deploying applications.
The web container instance is started on another port number (that can be specified) but
 all access are proxified.
It means that the web container will be started only when a connection is done on the
 http port.
The .war file is also loaded upon request.
This feature cannot be enabled in production mode.
jonas.service.web.ondemand.enabled true 2

The redirect port number is used to specify the port number of the http web container.
The proxy will listen on the http web container port and redirect all requests on this
 redirect port
0 means that a random port is used.
jonas.service.web.ondemand.redirectPort 0 3

For customizing the web service, it is possible to:

1 Set or not the XML validation at the deployment descriptor parsing time.
2 Enable or not the onDemand feature. In addition of activating this global feature, each web

application that has to be loaded on demand must declare the on-demand element in the JOnAS
deployment descriptor (WEB-INF/jonas-web.xml) as below:

<?xml version="1.0" encoding="ISO-8859-1"?>
<jonas-web-app xmlns="http://www.objectweb.org/jonas/ns"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.objectweb.org/jonas/ns
 http://www.objectweb.org/jonas/ns/jonas-web-app_5_1.xsd">

 ...

 <!-- Load this application on demand (if enabled in the webcontainer service) -->
 <on-demand>true</on-demand>
</jonas-web-app>

3 This property is specific to the onDemand feature. Useful to set the port number of the http web
container in case of the port number defined in the web server configuration is used by the proxy.

2.4.22. wm service configuration
The wm service provides a J2CA WorkManager [http://java.sun.com/j2ee/1.4/docs/api/javax/
resource/spi/work/WorkManager.html] implementation. This service don't need to be defined in the
list of JOnAS services as it is automatically started when required.

Here is the part of jonas.properties concerning the wm service:

###################### JOnAS WorkManager service configuration
#
Set the name of the implementation class of the wm service
jonas.service.wm.class org.ow2.jonas.workmanager.internal.JOnASWorkManagerService

http://java.sun.com/j2ee/1.4/docs/api/javax/resource/spi/work/WorkManager.html
http://java.sun.com/j2ee/1.4/docs/api/javax/resource/spi/work/WorkManager.html
http://java.sun.com/j2ee/1.4/docs/api/javax/resource/spi/work/WorkManager.html

Configuring a JOnAS instance

40

Set the size of the worker thread pool
jonas.service.wm.minworkthreads 3 1

Set the maximun size of the worker thread pool
jonas.service.wm.maxworkthreads 80 2

Set the max # of seconds that a thread will wait for work
This is used to shrink the worker thread pool back to minimum
jonas.service.wm.threadwaittimeout 60 3

1 Defines the minimum size of the Thread pool
2 Defines the maximum size of the Thread pool
3 Defines the maximum time (in seconds) that a worker Thread should wait before execution

The wm service is used, for example, in the resource service (J2CA 1.5 implementation) in
order to provide a javax.resource.spi.work.WorkManager instance for deployed resource
adapters (like JMS, ...).

2.4.23. wsdl-publisher service configuration
The wsdl-publisher service provides a pluggable component dedicated to alternate WSDL publishing
mechanisms.

By default, all the web services deployed by JOnAS have their WSDL available at a given URL
location. For J2EE 1.4 webservices, the URL ends with ?JWSDL, for Java EE 5.0 webservices, the
URL ends with ?WSDL.

When this default publishing mechansim is not sufficent, it is possible to add one or more custom
WSDL publishers. Within JOnAS, 2 custom publishers are availables (file based and JAXR based).

Here is the part of jonas.properties concerning the wsdl-publisher service:

###################### JOnAS WSDL Publisher service configuration
#
Set the name of the implementation class of the WSDL Publisher service.
jonas.service.wsdl-publisher.class
 org.ow2.jonas.ws.publish.internal.manager.DefaultWSDLPublisherManager

Set the WSDL Publishers list for WSDL publication
A minimum of 1 WSDLPublisher is required !
This property is set with a coma-separated list of WSDLPublisher properties
file names (without the '.properties' suffix).
Ex: file1,uddi (while the properties file names are
file1.properties and uddi.properties)
jonas.service.wsdl-publisher.publishers file1

2.4.23.1. File WSDLPublisher

The File WSDLPublisher type is used in simple WebServices usage scenario, when the application
doesn't requires a full blown web services registry (like UDDI [http://en.wikipedia.org/wiki/
Universal_Description_Discovery_and_Integration] or ebXML [http://www.ebxml.org]). It will
simply save the WSDL documents (and their dependencies) in a configurable directory.

FileWSDLPublisher class
jonas.service.wsdl.class org.ow2.jonas.ws.publish.internal.file.FileWSDLPublisher

Directory where WSDLs will be copied
If not set JONAS_BASE/wsdls will be used
jonas.service.publish.file.directory /tmp 1

Encoding of the file (In respect with the platform JOnAS is running on)
If not set default to UTF-8
jonas.service.publish.file.encoding UTF-8 2

1 Base directory where WSDL documents will be published

http://en.wikipedia.org/wiki/Universal_Description_Discovery_and_Integration
http://en.wikipedia.org/wiki/Universal_Description_Discovery_and_Integration
http://en.wikipedia.org/wiki/Universal_Description_Discovery_and_Integration
http://www.ebxml.org
http://www.ebxml.org

Configuring a JOnAS instance

41

2 File encoding to be used (must be supported by the platform)

2.4.23.2. JAXR WSDLPublisher

The JAXR WSDLPublisher type is responsible of publishing a given WSDL in an enterprise level
registry or repository, allowing external clients to get the technical and administrative information
about the deployed service.7

RegistryWSDLPublisher class
jonas.service.wsdl.class org.ow2.jonas.ws.publish.internal.registry.RegistryWSDLPublisher

User name and Password to access Registry
jonas.service.publish.uddi.username jonas
 1

jonas.service.publish.uddi.password jonas
 2

Organization name, small desc (optionnal) and primary contact name.
jonas.service.publish.uddi.organization.name OW2
 3

jonas.service.publish.uddi.organization.desc OW2 Consortium (http://www.ow2.org)
 4

jonas.service.publish.uddi.organization.person_name JOnAS
 5

URLs where Registry can be contacted (Publish an Query APIs)
javax.xml.registry.lifeCycleManagerURL http://localhost:9000/juddi/publish
 6

javax.xml.registry.queryManagerURL http://localhost:9000/juddi/inquiry
 7

1 Username
2 Credential to be used for registry authentication
3 Organization name
4 Organization details/description
5 Contact for the organization
6 JAXR LifeCycleManager URL (Administration URL where WSDL can be published)
7 JAXR QueryManager URL (Read only URL acting as a registry)

2.5. Configuring Security
The security service is used by the ejb, web, ws services to provide security for Java
EE components. The ejb service provides security in two forms: declarative security and
programmatic security that is described in the EJB Programmer's Guide: Security Management
[ejb2_programmer_guide.html#ejb2.security] .

The security service exploits security roles and method permissions located in the Java EE deployment
descriptors.

A main concept in security is Authentication which is the mechanism telling the container the identity
of the user making the current request.

A caller is a client that may be a servlet client or a container client. Usually a client proves its identity
by a couple user/password or a certificate (credential). Once the identification is correct JOnAS must
build a security context that will be propagated with requests and be used by the container to verify
that the user exists and has permissions sufficient to make the request.

JAAS is a standard framework for authenticating users. It defines configuration files
(jaas.config) and interfaces like the LoginModule interface that may be used in JOnAS to
perform authentication tasks.

Lightweight authentication mechanism using JACC may be used to authenticate servlet client.

7JOnAS has been tested with Apache jUDDI, an ASL2 UDDI v2 implementation.

ejb2_programmer_guide.html#ejb2.security
ejb2_programmer_guide.html#ejb2.security

Configuring a JOnAS instance

42

In the Tomcat documentation we can find this definition: “A Realm is a "database" of usernames and
passwords that identify valid users of a web application (or set of web applications), plus an enum
eration of the list of roles associated with each valid user.”

In both authentication mechanisms the container use a realm to verify validity of users. In JOnAS the
realm may be a database accessed via JDBC (Database realm), a LDAP directory (LDAP realm) or a
flat file (Memory realm). The type of realm to use is specified in $JONAS_BASE/conf/jonas-
realm.xml.

2.5.1. jonas-realm.xml
The file $JONAS_BASE/conf/jonas-realm.xml file describes:

• the content of flat file memory realm

• how to access a database realm

• how to access a LDAP realm

2.5.1.1. Memory realm

The memoryrealm must be named and defines users, groups and roles in the section <jonas-
memoryrealm>

<jonas-memoryrealm>
 <memoryrealm name="memrlm_1"> 1

 <roles>
 <role name="jonas-admin" description="JonasAdmin role" /> 2

 <role name="tomcat" description="Used in examples" />
 </roles>
 <groups>
 <group name="jonas"
 roles="jonas-admin,tomcat,jaas,ws-security" description="All authorization" /> 3

 </groups>
 <users>
 <user name="tomcat" password="tomcat" roles="tomcat,jonas-admin,manager" /> 4

 <user name="jetty" password="jetty" roles="jetty" />
 <!-- Example of a crypt password : password for jadmin is : jonas -->
 <user name="jadmin" password="{MD5}nF3dVBB3NPfRgzWlJFwoaw==" roles="jonas-admin" /> 5

 <user name="jps_admin" password="admin" roles="administrator" />
 <user name="supplier" password="supplier" roles="administrator" />
 <!-- Another crypt example in another format : password is jonas -->
 <!-- JonasAdmin uses name="jonas" password="jonas" -->
 <user name="jonas" password="SHA:NaLG+uYfgHeqth+qQBlyKr8FCTw=" groups="jonas" /> 6

 <user name="principal1" password="password1" roles="role1" />
 <user name="principal2" password="password2" roles="role2" />
 </users>
 </memoryrealm>
</jonas-memoryrealm>

1 memoryrealm must be named. This name will be used in the web container configuration file
2 definition of a security role
3 definition of a group of roles
4 definition of a user with non encrypted password and a list of roles
5 definition of a user with encrypted password (format MD5)
6 definition of a user with encrypted password (format SHA)

2.5.1.2. database realm

Users, groups, and roles information are stored in a database; the configuration for accessing the
corresponding database is described in the section <jonas-dsrealm>

The configuration requires the name of a datasource, the tables used, and the names of the columns.

<jonas-dsrealm>

Configuring a JOnAS instance

43

 <dsrealm name="dsrlm_1" 1

 dsName="jdbc_1" 2

 userTable="realm_users" userTableUsernameCol="user_name"
 userTablePasswordCol="user_pass" 3

 roleTable="realm_roles" roleTableUsernameCol="user_name"
 roleTableRolenameCol="role_name"> 4

 </dsrealm>
</jonas-dsrealm>

1 dsrealm must be named
2 JNDI name of the dataSource for accessing the database via JDBC
3 defines the name of the user table and the name of the columns for username/password
4 defines the name of the role table and the name of the columns for username/rolename

to use this database a Datasource configuration with the right JNDI name for the dbm service must
be set in the jonas.properties file.

2.5.1.3. LDAP realm

Users, groups, and roles information are stored in an LDAP directory. This is described in the section
<jonas-ldaprealm>

There are some optional parameters. If they are not specified, some of the parameters are
set to a default value. For example if the providerUrl element is not set, the default value
is ldap://localhost:389. The jonas-realm_1_0.dtd DTD [http://jonas.objectweb.org/dtds/
jonas-realm_1_0.dtd]file show the default values.

• minimal example:

<jonas-ldaprealm>
<ldaprealm name="ldaprlm_1" 1

 baseDN="dc=jonas,dc=ow2,dc=org" /> 2

</jonas-ldaprealm>

1 ldaprealm must be named
2 to access to LDAP server

For this sample, it is assumed that the LDAP server is on the same computer and is on the
default port (389).

2.5.2. Servlet Authentication
Depending on the servlet container used, configuration differs.

2.5.2.1. Authentication with User/password and Tomcat 6

• Tomcat configuration:

Tomcat embedded in the JOnAS distribution is configured in $JONAS_BASE/conf/tomcat6-
server.xml to use the memory realm named memrlm_1

<Server>
[...]
<Realm className="org.ow2.jonas.web.tomcat6.security.Realm" resourceName="memrlm_1" />
[...]
</Server>

The authentication mechanism implemented by the class
org.ow2.jonas.web.tomcat6.security.Realm is able to work with database or LDAP
realm configured in jonas-realm.xml. The value of resourceName attribute identifies the
realm to be used in jonas-realm.xml.

• webapp configuration:

http://jonas.objectweb.org/dtds/jonas-realm_1_0.dtd
http://jonas.objectweb.org/dtds/jonas-realm_1_0.dtd
http://jonas.objectweb.org/dtds/jonas-realm_1_0.dtd

Configuring a JOnAS instance

44

In the web.xml of the web application a basic authentication or a Form based authentication
may be used

<web-app>
<login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>Example Basic Authentication Area</realm-name>
 </login-config>
</web-app>

or

<web-app>
 <login-config>
 <auth-method>FORM</auth-method>
 <form-login-config>
 <form-login-page>login.jsp</form-login-page>
 <form-error-page>error.jsp</form-error-page>
 </form-login-config>
 </login-config>
</web-app>

Like basic authentication, form-based authentication is not secure, since the content of the user
dialog is sent as plain text, and the target server is not authenticated.

To overcome this vulnerability the authentication protocol may be run over a SSL session that
ensures that all message contents are protected for confidentiality.

2.5.2.2. Authentication with certificate and Tomcat 6

In this case, users will not have to enter a login/password. They will just present their certificates and
authentication is performed transparently by the browser (after the user has imported his certificate
into it). Therefore, the identity presented to the server is not a login, but a Distinguished Name(DN).

• jonas-realm configuration:

The name identifying the person to whom the certificate belongs looks like the following:
CN=Someone Unknown, OU=ObjectWeb, O=JOnAS, C=ORG with:

CN : Common Name

OU : Organizational Unit

O : Organization

C : Country Name

E : Email Address

L : Locality

ST :State or Province Name

The Subject in a certificate contains the main attributes and may include additional ones, such as
Title, Street Address, Postal Code, Phone Number.

In the jonas-realm.xml a user with password looks like:

<user name="jps_admin" password="admin" roles="administrator"/>

A certificate-based user must have its DN preceded by the String: ##DN## example:

<user name="##DN##CN=whale, OU=ObjectWeb, O=JOnAS, L=JOnAS, ST=JOnAS, C=ORG"
 password="" roles="jadmin" />

Configuring a JOnAS instance

45

• Tomcat Realm configuration:

The current Realm in $JONAS_BASE/conf/tomcat6-server.xml must be replaced by:

<Server>
[...]
<Realm className="org.ow2.jonas.web.tomcat6.security.Realm" />
[...]
</Server>

The class specified uses the JAAS model to authenticate the users. Thus, to choose the correct realm
to be used for authentication, JAAS must be configured see in Section 2.5.4, “JAAS configuration”.

• Tomcat SSL configuration:

The following example of <connector> element must be uncommented in $JONAS_BASE/conf/
tomcat6-server.xml and customized (if necessary):

<Server>
[...]
<!-- Define a SSL Coyote HTTP/1.1 Connector on port 9043 -->
 <!--
 <Connector port="9043" maxHttpHeaderSize="8192"
 maxThreads="150" minSpareThreads="25" maxSpareThreads="75"
 enableLookups="false" disableUploadTimeout="true"
 acceptCount="100" scheme="https" secure="true"
 clientAuth="false" sslProtocol="TLS" />
 -->
[...]
</Server>

A complete description of SSL configuration can be found in SSL Configuration HOW-TO [http://
tomcat.apache.org/tomcat-5.5-doc/ssl-howto.html]

• Webapp configuration:

In the web.xmlof the web application a Client Certificate Authentication Configuration must be
set, a security-constraint may be used if needed; example:

<web-app>
 <login-config>
 <auth-method>CLIENT-CERT</auth-method>
 <realm-name>Example Authentication Area</realm-name>
 </login-config>

 <security-constraint>
 ..
 <user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>
 </security-constraint>
</web-app>

2.5.2.3. Servlet Authentication with User/password and Jetty 6.x

• Jetty configuration

A web-jetty.xml file must be provided in the WEB-INF directory in the .war file in which a security
interceptor org.ow2.jonas.web.jetty6.security.Realm form is specified instead of
the default one:

<Configure class="org.mortbay.jetty.webapp.WebAppContext">
 <Call name="setRealmName">
 <Arg>Example Basic Authentication Area</Arg>
 </Call>
 <Call name="setRealm">
 <Arg>
 <New class="org.ow2.jonas.web.jetty6.security.Realm">
 <Arg>Example Basic Authentication Area</Arg>
 <Arg>memrlm_1</Arg>

http://tomcat.apache.org/tomcat-5.5-doc/ssl-howto.html
http://tomcat.apache.org/tomcat-5.5-doc/ssl-howto.html
http://tomcat.apache.org/tomcat-5.5-doc/ssl-howto.html

Configuring a JOnAS instance

46

 </New>
 </Arg>
 </Call>
</Configure>

• webapp configuration:

is similar to the webapp configuration with Tomcat see ??? [43].

2.5.2.4. Authentication with certificate and Jetty 6.x

• Jetty Realm configuration:

Edit the web-jetty.xml file under WEB-INF directory in the .war file to declare a Realm name and
a Realm:

<Configure class="org.mortbay.jetty.webapp.WebAppContext">
...
!-- Set the same realm name as the one specified in <realm-name> in <login-config>
 in the web.xml file of your web application -->
<Call name="setRealmName">
 <Arg>Example Authentication Area</Arg>
</Call>
<!-- Set the class Jetty has to use to authenticate the user and a title name for
 the pop-up window -->
<Call name="setRealm">
 <Arg>
 <New class="org.ow2.jonas.web.jetty6.security.Realm">
 <Arg>JAAS on Jetty</Arg>
 </New>
 </Arg>
</Call>
...
</Configure>

The class specified uses the JAAS model to authenticate the users. Thus, to choose the correct realm
to be used for authentication, JAAS must be configured, see in Section 2.5.4, “JAAS configuration”.

• Jetty SSL configuration:

In the global deployment descriptor of Jetty (the jetty6.xml file), located in the $JONAS_BASE/
conf directory, uncomment this part:

 <!-- -->
 <!-- Add a HTTPS SSL listener on port 9043 -->
 <!-- -->
 <!-- UNCOMMENT TO ACTIVATE
 <Call name="addListener">
 <Arg>
 <New class="org.mortbay.http.SunJsseListener">
 <Set name="Port">9043</Set>
 <Set name="MinThreads">5</Set>
 <Set name="MaxThreads">100</Set>
 <Set name="MaxIdleTimeMs">30000</Set>
 <Set name="LowResourcePersistTimeMs">2000</Set>
 <Set name="Keystore"><SystemProperty name="jetty.home" default="."/>/etc/
demokeystore</Set>
 <Set name="Password">OBF:1vny1zlo1x8e1vnw1vn61x8g1zlu1vn4</Set>
 <Set name="KeyPassword">OBF:1u2u1wml1z7s1z7a1wnl1u2g</Set>
 </New>
 </Arg>
 </Call>
 -->

A complete description of howto configure SSL for Jetty may be founf here [http://
jetty.mortbay.org/jetty5/faq/faq_s_400-Security_t_ssl.html]

• webapp configuration

is similar to the webapp configuration with Tomcat [45]

http://jetty.mortbay.org/jetty5/faq/faq_s_400-Security_t_ssl.html
http://jetty.mortbay.org/jetty5/faq/faq_s_400-Security_t_ssl.html
http://jetty.mortbay.org/jetty5/faq/faq_s_400-Security_t_ssl.html

Configuring a JOnAS instance

47

• jonas-realm configuration

is similar to the jonas-realm configuration with Tomcat [44]

2.5.3. Client container Authentication
To enable authentication mechanism in a client container it is necessary to

• choose a callback handler

Callback handlers are responsible to get the user identity and to store it.

The choice of the callback handler is done in the application-xml file, for example:

<application-client>
 <callback-handler>org.ow2.jonas.security.auth.callback.LoginCallbackHandler</callback-
handler>
</application-client>

JOnAS provides several callback handlers8:

• LoginCallbackHandler : it is a text based handler that gets the user and password via stdin

• DialogCallbackHandler: handler using a Swing dialog window to query user and
password

• NoInputCallbackHandler: is responsible to store a user/password

• CertificateCallback: is responsible to store a certificate

• configure JASS for setting the LoginModules to be used to perform authentication see Section 2.5.4,
“JAAS configuration”

In the $JONAS_ROOT/examples/javaee5-earsample directory can be found examples of clients
using JAAS authentication as well as one java client without container client that uses also JAAS.

2.5.4. JAAS configuration
The JAAS configuration is made via the JAAS Login Configuration File

A login configuration file consists of one or more entries, each specifying which underlying
authentication technology should be used for a particular application or applications.

The contents of the JAAS configuration file has the structure below:

Application_1 {
 LoginModuleClassA Flag Options;
 LoginModuleClassB Flag Options;
 LoginModuleClassC Flag Options;
};

Application_2 {
 LoginModuleClassB Flag Options;
 LoginModuleClassC Flag Options;
};

Other {
 LoginModuleClassC Flag Options;
 LoginModuleClassA Flag Options;
};

There is a flag associated with all the LoginModules to configure their behaviour in case of success
or failure:

Configuring a JOnAS instance

48

• required - The LoginModule is required to succeed. If it succeeds or fails, authentication still
proceeds through the LoginModule list.

• requisite - The LoginModule is required to succeed. If it succeeds, authentication continues through
the LoginModule list. If it fails, control immediately returns to the application (authentication does
not proceed through the LoginModule list).

• sufficient - The LoginModule is not required to succeed. If it does succeed, control immediately
returns to the application (authentication does not proceed through the LoginModule list). If it fails,
authentication continues through the LoginModule list.

• optional - The LoginModule is not required to succeed. If it succeeds or fails, authentication still
proceeds through the LoginModule list.

2.5.4.1. Default JAAS configuration

JOnAS provides in $JONAS_BASE/conf/jaas.config a JAAS Login Configuration File
already configured with some login configuration.

There are two requirements: the entry dedicated to Tomcat must be named tomcat, and the entry for
Jetty, jetty. Note that everything in this file is case-sensitive.

The predifined entries are:

• tomcat used for authentication with the web container Tomcat

• jetty used for authentication with the web container Jetty

• jaasclient may be used for autentication in a fat client

The default configuration for the web container Tomcat is the following:

tomcat {
 org.ow2.jonas.security.auth.spi.JResourceLoginModule required
 resourceName="memrlm_1"
 ;
};

this indicates that the JResourceLoginModule Login Module must be used on the memory realm
named memrlm_1.

The default configuration for the web container Jetty is the same than the previous:

jetty {
 org.ow2.jonas.security.auth.spi.JResourceLoginModule required
 resourceName="memrlm_1"
 ;
};

the configuration for the container clients examples :

jaasclient {
 // Login Module to use for the example jaasclient.

 org.ow2.jonas.security.auth.spi.JResourceLoginModule required
 resourceName="memrlm_1"

 org.ow2.jonas.security.auth.spi.ClientLoginModule required
 globalCtx="true"
 ;
};

Here two Login Modules are used, one for checking the identity in the memoty realm, the second for
propagating a security context with the client request.

Configuring a JOnAS instance

49

To change the location and name of the jaas.config file, edit the $JONAS_BASE/bin/jonas
script and modify the following line:

-Djava.security.auth.login.config=$JONAS_BASE/conf/jaas.config

2.5.4.2. JOnAS LoginModules

JOnAS provides some predefined LoginModules:

JResourceLoginModule This is the main LoginModule. It is highly recommended that this one
be used in every authentication, as it checks the user authentication
information in the specified realm database, LDAP or memory.

This LoginModule delegates the authentication to the server . Here
are the possible attributes to set:

attribute name description

resourceName name of the realm

serverName name of JOnAS instance (default
value= jonas)

useUpperCaseUsername if true Convert the username into
uppercase for the authentication
(default value=false)

certCallback if true use certificate callback

CRLLoginModule This LoginModule contains authentication based on certificates.
However, when enabled, it will also permit non-certificate based
accesses. It verifies that the certificate presented by the user has not
been revoked by the Certification Authority that signed it. To use it,
the directory in which to store the revocation lists (CRLs) files or an
LDAP repository must exist.

attribute name description

CRLsResourceName specifies how the CRLs are
stored:Two possible values
"Directory" or "LDAP"

CRLsDirectoryName The directory containing the CRL
files (the extension for these files
must be .crl).

address address of the server that hosts
the LDAP repository

port port used by the LDAP
repository; CRLs are retrieved
from an LDAP directory using
the LDAP schema defined in
RFC 2587 [http://www.ietf.org/
rfc/rfc2587.txt]

SignLoginModule login module that signs the current Subject ,. Here are the possible
attributes to set:

attribute name description

keystoreFile Name of the key store

keystorePass password for the keystore

http://www.ietf.org/rfc/rfc2587.txt
http://www.ietf.org/rfc/rfc2587.txt
http://www.ietf.org/rfc/rfc2587.txt

Configuring a JOnAS instance

50

keyPass password for the private key

alias alias

ClientLoginModule login module used for propagating the Principal and roles to the
server, it doesn't make any authentication. This login module must be
used when authentication for a client container. Here is the possible
attribute to set:

attribute name description

globalCtx if true set the security context
for all the threads of the client
container instead of only on the
current thread. Useful for swing
client. (default value= false)

2.6. Configuring JDBC Resource Adapters
Connection of an J2EE application to databases is done through JDBC Resource Adapters (JDBC RA).

Such Resource Adapters are deployed via the resource service as seen in Section 2.4.16, “resource
service configuration”.

For both container-managed or bean-managed persistence, the JDBC Resource Adapter makes use of
relational storage systems through the JDBC interface.

JDBC connections are obtained from a JDBC RA.

The JDBC RA implements the J2EE Connector Specification using the DataSource interface
as defined in the JDBC [http://java.sun.com/javase/technologies/database/index.jsp] standard
extensions.

An JDBC RA is configured to identify a database and a means to access it via a JDBC driver. Multiple
JDBC RAs can be deployed either via the jonas.properties file or included in the autoload
directory of the resource service.

The following section explains how JDBC RARs can be defined and configured in the JOnAS server.

To support distributed transactions, the JDBC RA requires the use of at least a JDBC2-XA-
compliant driver. Such drivers implementing the XADataSource interface are not always available
for all relational databases. The JDBC RA provides a generic driver-wrapper that emulates the
XADataSource interface on a regular JDBC driver. It is important to note that this driver-wrapper does
not ensure a real two-phase commit for distributed database transactions.

2.6.1. Generic JDBC Resource Adapters
The generic JDBC RAs of JOnAS provide implementations of the java.sql.Driver,
javax.sql.DataSource, javax.sql.ConnectionPoolDataSource, and
javax.sql.XADataSource interfaces. They are located in the $JONAS_ROOT/rars/
autoload directory and thus are deployed automatically.They consist of base (or generic) RAs
facilitating the build of the user JDBC RAs.

Depending on the relational database management server and the available interface in the used JDBC-
compliant driver, the user JDBC RA is linked (through the RAR link feature) to a generic RA (for
example, the Driver's one). In this case, the user RA contains only a jonas-ra.xml file with some
specific parameters, such as the connection url, the user/password, or the JDBC-Driver class.

http://java.sun.com/javase/technologies/database/index.jsp
http://java.sun.com/javase/technologies/database/index.jsp

Configuring a JOnAS instance

51

Resource adapter
provided with JOnAS

description jndi name

rars/autoload/
JOnAS_jdbcDS.rar

Generic JDBC RA that
implements the DataSource
interface

JOnASJDBC_DS

rars/autoload/
JOnAS_jdbcDM.rar

Generic JDBC RA that
implements the Driver
interface

JOnASJDBC_DM

rars/autoload/
JOnAS_jdbcCP.rar

Generic JDBC RA that
implements the
ConnectionPoolDataSource
interface

JOnASJDBC_CP

rars/autoload/
JOnAS_jdbcXA.rar

Generic resource adapter that
implements the
XADataSource interface

JOnASJDBC_XA

2.6.2. Specific JDBC Resource Adapter
The remainder of this section, which describes how to define and configure JDBC RAs, is specific to
JOnAS. However, the way to use these JDBC RAs in the Application Component methods is standard,
i.e., via the resource manager connection factory references (refer to the example in the section Writing
Database Access Operations [ejb2_programmer_guide.html#ejb2.bmp].

An RAR file must be deployed as explained in Section 2.4.16, “resource service configuration”.

Usually a resource Adapter contains in its rar file all the classes needed to access to the external
resource. In the case of a specific JDBC RA it contains only a JOnAS specific deployment descriptor
jonas-ra.xml that tell what sort of generic resource adapter to use and information related to the
specific database used. The jar file of the actual JDBC driver mut be copied in the right place to be
seen by the JOnAS classloader : $JONAS_BASE/lib/ext.

Changing the configuration of the RA requires extracting and editing the deployment descriptor and
updating the archive file. There are several possible ways to do this:

• With the RAConfig command (refer to the JOnAS Commands Reference Guide
[command_guide.html] for a complete description of the command).

• Through the jonasAdmin console (refer to Administration guide for a complete description). In the
jonasAdmin's tree, the Resource Adapter Module node (under the deployment node) contains a
configure tab that allows editing of both the ra.xml file and the jonas-ra.xml file of the undeployed
RA.

2.6.2.1. Defining the JOnAS Connector Deployment Descriptor:
jonas-ra.xml

The jonas-ra.xml contains JOnAS specific information describing deployment information,
logging, pooling, jdbc connections, and RAR config property values:

• Deployment Tags:

property name description possible values

jndiname name the RAR will be
registered as. This property is
required. This value will be
used in the resource-ref section
of an Java EE composant.

• Anyname (for example
jdbc_1)

ejb2_programmer_guide.html#ejb2.bmp
ejb2_programmer_guide.html#ejb2.bmp
ejb2_programmer_guide.html#ejb2.bmp
command_guide.html
command_guide.html

Configuring a JOnAS instance

52

rarlink jndiname of a base RAR file.
Useful for deploying multiple
connection factories without
having to deploy the complete
RAR file again. When this is
used, the only entry in RAR is a
META-INF/jonas-ra.xml

• JONASJDBC_DM

• JONASJDBC_DS

• JONASJDBC_CP

• JONASJDBC_XA

native-lib defines the path where native
libraries can be found.

• Any string for a path

• Logging Tags:

property name description possible values

log-enabled determines if logging should be
enabled for the RAR.

• False (default value)

• True

log-topic: defines the log topic that will be
used to write log messages for
this rar file.

• Any topic name

• Default value is
org.objectweb.jonas.jca

• Pooling Tags

property name description possible values

pool-init Initial size of the managed
connection pool

• 0 (default value)

• n

pool-min Minimum size of the managed
connection pool.

• 0 (default value)

• n

pool-max Maximum size of the managed
connection pool.

• n

• -1 = unlimited (default value)

pool-max-age-minutes Maximum number of minutes
to keep the managed connection
in the pool.

• 0 = an unlimited amount of
time.

• n in minutes

pstmt-max Maximum number of
PreparedStatements per
managed connection in the
pool. Only needed with the
JDBC RA of JOnAS or another
database vendor's RAR. Value
of 0 is unlimited and -1 disables
the cache.

• 0 = unlimited

• n (default value = 10)

• -1 = cache disabled

pool-max-opentime Identifies the maximum number
of minutes that a managed
connection can be left busy.

• 0 = an unlimited amount of
time (default value).

• n in minutes

pool-max-waiters: identifies the maximum number
of waiters for a managed
connection. Default value is 0.

• 0 (default value)

• n

pool-max-waittime identifies the maximum number
of seconds that a waiter will

• 0 (default value)

• n in seconds

Configuring a JOnAS instance

53

wait for a managed connection.
Default value is 0.

pool-sampling-period: identifies the number of
seconds that will occur between
statistics samplings of the pool.
Default is 30 seconds.

• n in seconds (default value =
30s)

• JDBC Connection Tags:

Note

Only valid for Connection implementation of java.sql.Connection.

property name description possible values

jdbc-check-level Level of checking that will be
done for the jdbc connection.

• 0 : no check (default value)

• 1: check connection still open

• 2 : send the test statement
before reusing a connection
from the pool

• 3: (keep-alive feature) send
the test statement on
each connection every pool-
sampling-period

jdbc-test-statement Test SQL statement sent on the
connection if the jdbc-check-
level is greater than 1.

• A SQL statement

• Config Property Value Tags:

Each entry must correspond to the config-property specified in the ra.xml of the RAR file. The
default values specified in the ra.xml will be loaded first and any values set in the jonas-ra.xml will
override the specified defaults. These tags differs dependiing on the generic JDBC RA used

property name description possible values

dsClass Name of the class implementing
java.sql.Driver,
javax.sql.DataSource,
javax.sql.ConnectionPoolDataSource,
or
javax.sql.XADataSource
interfaces in the JDBC driver.

• any classname representing
a JDBC driver
(example:org.postgresql.Driver)

URL Database url of the form
jdbc:<database_vendor_subprotocol>.
This property may be used only
for JDBC RA that implements
the Driver (JDBC_DM)

• Any url valid for
a database provider
(example:jdbc:postgresql://
localhost:5432/mydb)

user Database user name • any name

password: Database password • any string

loginTimeout Maximum time in seconds that
the driver will wait while
attempting to connect to a
database.

• no value = 0 (default value)

• n in seconds

Configuring a JOnAS instance

54

isolationLevel Level of transaction isolation • none

• serializable

• read_committed

• read_uncommitted

• repeatable_read

mapperName Name of the JORM mapper The possible values can
be found in the List
of available mappers in
JORM documentation [http://
jorm.objectweb.org/doc/
mappers.html].

databaseName Name of the database • any name

description: Informal description • any String

portNumber Port Number of the database
server

• a number

serverName Name of the database server. • any name

dbSpecificMethods allow flexibility to call setter
methods on the dsClass as
required by the database
provider

see below the particular syntax

• dbSpecificMethods a specific property:

The JOnAS JDBC Resource Adapter is built as a generic connector to any database provider. The
limitation of this is that each database provider may have different requirements about the methods
needed to configure the dataSource class. This dbSpecificMethods property was added to allow
flexibility to call setter methods on the dsClass as required by the database provider. The specific
information about what additional methods should be used is documented by the database provider.
The format of the value specified is:

[:<del_char>]<method>=<value>::<value_type>:<method>=<value>::<value_type>....with:

: optional starting value that denotes using the
next character as the delimiter instead of the
default ':'

<del_char> delimiter character to use

<method> method to call followed by an = sign

<value> the parameter value to pass to the method being
called, followed by 2 delimiter characters.If a
Properties object is being passed, then the format
of this value must be (name=val, name=val, ...);

<value_type> the parameter type used to construct the
reflection call, followed by the delimiter
character if additional methods are being called

• Boolean or bool

• Byte or byte

• Character or char

• Double or double

http://jorm.objectweb.org/doc/mappers.html
http://jorm.objectweb.org/doc/mappers.html
http://jorm.objectweb.org/doc/mappers.html
http://jorm.objectweb.org/doc/mappers.html
http://jorm.objectweb.org/doc/mappers.html
http://jorm.objectweb.org/doc/mappers.html

Configuring a JOnAS instance

55

• Float or float

• Integer or int

• Long or long

• Properties or java.util.Properties

• Short or short

• String

Note

If this JDBC resource is used as a persistence unit, the persistence configuration defined
in the persistence.xml file must be coherent to this jonas-ra.xml description,
such as the datasource name and the dialect.

2.6.2.2. Understanding pooling tags:

At JDBC RA deployment time, if pool-init is not null pool-init JDBC connection are created.

When a user requests a jdbc connection, the JDBC RA first checks to see if a connection is already
open for its transaction. If not, it tries to get a free connection from the free list. If there are no more
connections available, it creates a new jdbc connection (if pool-max is not reached).

If it cannot create new connections, the user must wait (if pool-max-waiters is not reached) until a
connection is released. After a limited time (pool-max-waittime), the getConnection returns
an exception.

When the user calls close() on its connection, it is put back in the free list.

Many statistics are computed (every pool-sampling-period seconds) and can be viewed by
JonasAdmin. This is useful for tuning these parameters and for seeing the server load at any time

When a connection has been open for a time too long (pool-max-age), the pool will try to release it
from the freelist. However, the JDBC RA always tries to keep open at least the number of connections
specified in pool-min.

When the user has forgotten to close a jdbc connection, the system can automatically close it, after
pool-max-opentime minutes. Note that if the user tries to use this connection later, thinking it is still
open, it will return an exception (socket closed).

When a connection is reused from the freelist, it is possible to verify that it is still valid. This is
configured in jdbc-check-level . For levels >1 it tries a dummy statement on the connection before
returning it to the caller. This statement is configured in jdbc-test-statement.

Note

this previous description is not only true for JDBC RAs but also for all types of
resource adapters, except jdbc-check-level and jdbc-test-statement which are specifics
for JDBC.

2.6.3. Examples of Specific JDBC Resource Adapter

Configuring a JOnAS instance

56

2.6.3.1. Oracle JDBC resource adapter (Driver)

An RAR for Oracle named as jdbc_1 in JNDI and using the Oracle thin Driver JDBC driver, should
be described in a file (called for example Oracle1_DM.rar), with the following properties
configured in the jonas-ra.xml file:

<?xml version = "1.0" encoding = "UTF-8"?>
<jonas-connector xmlns="http://www.objectweb.org/jonas/ns"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.objectweb.org/jonas/ns
 http://www.objectweb.org/jonas/ns/jonas-connector_4_2.xsd" >
 <jndi-name>jdbc_1</jndi-name>
 <rarlink>JOnASJDBC_DM</rarlink>
 <jonas-config-property>
 <jonas-config-property-name>user</jonas-config-property-name>
 <jonas-config-property-value>scott</jonas-config-property-value>
 </jonas-config-property>
 <jonas-config-property>
 <jonas-config-property-name>password</jonas-config-property-name>
 <jonas-config-property-value>tiger</jonas-config-property-value>
 </jonas-config-property>
 <jonas-config-property>
 <jonas-config-property-name>loginTimeout</jonas-config-property-name>
 <jonas-config-property-value></jonas-config-property-value>
 </jonas-config-property>
 <jonas-config-property>
 <jonas-config-property-name>URL</jonas-config-property-name>
 <jonas-config-property-value>jdbc:oracle:thin:@malte:1521:ORA1</jonas-config-property-
value>
 </jonas-config-property>
 <jonas-config-property>
 <jonas-config-property-name>dsClass</jonas-config-property-name>
 <jonas-config-property-value>oracle.jdbc.driver.OracleDriver</jonas-config-property-
value>
 </jonas-config-property>
 <jonas-config-property>
 <jonas-config-property-name>mapperName</jonas-config-property-name>
 <jonas-config-property-value>rdb.oracle</jonas-config-property-value>
 </jonas-config-property>
</jonas-connector>

In this example, "malte" is the hostname of the server running the database Oracle, 1521 is the
SQL*Net V2 port number on this server, and ORA1 is the ORACLE_SID. This example makes use
of the Oracle "Thin" JDBC driver. For an application server running on the same host as the Oracle
DBMS, you can use the Oracle OCI JDBC driver.

2.6.3.2. PostgreSQL JDBC resource adapter (Driver)

To create a PostgreSQL RAR configured as jdbc_3 in JNDI, it should be described in a file (called for
examplePostgreSQL3_DM.rar), with the following properties configured in the jonas-ra.xml file:

<?xml version = "1.0" encoding = "UTF-8"?>
<jonas-connector xmlns="http://www.objectweb.org/jonas/ns"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.objectweb.org/jonas/ns
 http://www.objectweb.org/jonas/ns/jonas-connector_4_2.xsd" >
 <jndi-name>jdbc_3</jndi-name>
 <rarlink>JOnASJDBC_DM</rarlink>
<jonas-config-property>
 <jonas-config-property-name>user</jonas-config-property-name>
 <jonas-config-property-value>jonas</jonas-config-property-value>
 </jonas-config-property>
 <jonas-config-property>
 <jonas-config-property-name>password</jonas-config-property-name>
 <jonas-config-property-value>jonas</jonas-config-property-value>
 </jonas-config-property>
 <jonas-config-property>
 <jonas-config-property-name>loginTimeout</jonas-config-property-name>
 <jonas-config-property-value></jonas-config-property-value>
 </jonas-config-property>
 <jonas-config-property>
 <jonas-config-property-name>URL</jonas-config-property-name>
 <jonas-config-property-value>jdbc:postgresql:/malte:5432/db_jonas</jonas-config-
property-value>

Configuring a JOnAS instance

57

 </jonas-config-property>
 <jonas-config-property>
 <jonas-config-property-name>dsClass</jonas-config-property-name>
 <jonas-config-property-value>org.postgresql.Driver</jonas-config-property-value>
 </jonas-config-property>
 <jonas-config-property>
 <jonas-config-property-name>mapperName</jonas-config-property-name>
 <jonas-config-property-value>rdb.postgres</jonas-config-property-value>
 </jonas-config-property>
</jonas-connector>

2.6.3.3. Oracle JDBC resource adapter (XADataSource)

An RAR for Oracle configured as jdbc_4 in JNDI and using the Oracle XADataSource interface of
the JDBC driver thin in order to use a JDBC2-XA-compliant driver.It may be described in a file (called
for example Oracle1_XA.rar), with the following properties configured in the jonas-ra.xml file:

<?xml version = "1.0" encoding = "UTF-8"?>
<jonas-connector xmlns="http://www.objectweb.org/jonas/ns"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.objectweb.org/jonas/ns
 http://www.objectweb.org/jonas/ns/jonas-connector_4_2.xsd" >
 <jndi-name>jdbc_4</jndi-name>
 <rarlink>JOnASJDBC_XA</rarlink>
 <jonas-config-property>
 <jonas-config-property-name>user</jonas-config-property-name>
 <jonas-config-property-value>jonas</jonas-config-property-value>
 </jonas-config-property>
 <jonas-config-property>
 <jonas-config-property-name>password</jonas-config-property-name>
 <jonas-config-property-value>jonas</jonas-config-property-value>
 </jonas-config-property>
 <jonas-config-property>
 <jonas-config-property-name>databaseName</jonas-config-property-name>
 <jonas-config-property-value>dbjonas</jonas-config-property-value>
 </jonas-config-property>
 <jonas-config-property>
 <jonas-config-property-name>portNumber</jonas-config-property-name>
 <jonas-config-property-value>1521</jonas-config-property-value>
 </jonas-config-property>
 <jonas-config-property>
 <jonas-config-property-name>serverName</jonas-config-property-name>
 <jonas-config-property-value>wallis</jonas-config-property-value>
 </jonas-config-property>
 <jonas-config-property>
 <jonas-config-property-name>dbSpecificMethods</jonas-config-property-name>
 <jonas-config-property-value>:#setDriverType=thin##String</jonas-config-property-
value>
 </jonas-config-property>
 <jonas-config-property>
 <jonas-config-property-name>dsClass</jonas-config-property-name>
 <jonas-config-property-value>oracle.jdbc.xa.client.OracleXADataSource</jonas-config-
property-value>
 </jonas-config-property>
</jonas-connector>

2.6.4. Tracing SQL Requests through P6Spy
The P6Spy [http://www.p6spy.com/] tool provides an easy way to trace the SQL requests sent to the
database.

To enable this tracing feature, perform the following configuration steps:

• Install the p6spy.jar9 into $JONAS_BASE/lib/ext.

• Update the appropriate RAR file's jonas-ra.xml file by setting the dsClass property to
com.p6spy.engine.spy.P6SpyDriver

• Set the realdriver property in the spy.properties file (located in $JONAS_BASE/conf) to
the jdbc driver of your actual database.

http://www.p6spy.com/
http://www.p6spy.com/

Configuring a JOnAS instance

58

• Verify that logger.org.objectweb.jonas.jdbc.sql.level is set to DEBUG in $JONAS_BASE/conf/
trace.properties.

Example jonas-ra.xml content:

<?xml version = "1.0" encoding = "UTF-8"?>
<jonas-connector xmlns="http://www.objectweb.org/jonas/ns"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.objectweb.org/jonas/ns
 http://www.objectweb.org/jonas/ns/jonas-connector_4_2.xsd" >
 <jndi-name>jdbc_3</jndi-name>
 <rarlink>JOnASJDBC_DM</rarlink>
 <native-lib></native-lib>
 <log-enabled>true</log-enabled>
 <log-topic>org.objectweb.jonas.jdbc.DMPostgres</log-topic>
 <pool-params>
 <pool-init>0</pool-init>
 <pool-min>0</pool-min>
 <pool-max>100</pool-max>
 <pool-max-age>0</pool-max-age>
 <pstmt-max>10</pstmt-max>
 </pool-params>

 <jdbc-conn-params>
 <jdbc-check-level>0</jdbc-check-level>
 <jdbc-test-statement></jdbc-test-statement>
 </jdbc-conn-params>
 <jonas-config-property>
 <jonas-config-property-name>user</jonas-config-property-name>
 <jonas-config-property-value>jonas</jonas-config-property-value>
 </jonas-config-property>
 <jonas-config-property>
 <jonas-config-property-name>password</jonas-config-property-name>
 <jonas-config-property-value>jonas</jonas-config-property-value>
 </jonas-config-property>
 <jonas-config-property>
 <jonas-config-property-name>loginTimeout</jonas-config-property-name>
 <jonas-config-property-value></jonas-config-property-value>
 </jonas-config-property>
 <jonas-config-property>
 <jonas-config-property-name>URL</jonas-config-property-name>
 <jonas-config-property-value>jdbc:postgresql://your_host:port/your_db</jonas-config-
property-value>
 </jonas-config-property>
 <jonas-config-property>
 <jonas-config-property-name>dsClass</jonas-config-property-name>
 <jonas-config-property-value>com.p6spy.engine.spy.P6SpyDriver</jonas-config-property-
value>
 </jonas-config-property>
 <jonas-config-property>
 <jonas-config-property-name>mapperName</jonas-config-property-name>
 <jonas-config-property-value>rdb.postgres</jonas-config-property-value>
 </jonas-config-property>
 <jonas-config-property>
 <jonas-config-property-name>logTopic</jonas-config-property-name>
 <jonas-config-property-value>org.objectweb.jonas.jdbc.DMPostgres</jonas-config-
property-value>
 </jonas-config-property>
</jonas-connector>

In $JONAS_BASE/conf/spy.properties file:

realdriver=org.postgresql.Driver

In $JONAS_BASE/conf/trace.properties:

logger.org.objectweb.jonas.jdbc.sql.level DEBUG

2.6.5. Migration from dbm service to the JDBC RA
The migration of a Database.properties file to a similar Resource Adapter can be
accomplished through the execution of the following RAConfig tool command. Refer to the JOnAS
Commands Reference Guide [command_guide.html#commands.raconfig] for a complete description
of RAConfig command.

command_guide.html#commands.raconfig
command_guide.html#commands.raconfig
command_guide.html#commands.raconfig

Configuring a JOnAS instance

59

RAConfig -dm -p MySQL1 $JONAS_ROOT/rars/autoload/JOnAS_jdbcDM MySQL_dm

Generates a MySQL_dm.rar file linked to JOnAS_jdbcDM.rar, the jonas-ra.xml file
inserted is created with values coming from the ra.xml file of the JOnAS_jdbcDM.rar and values
from the MySQL1.properties file

The jonas-ra.xml created by the previous command can be updated further, if desired. Once the
additional properties have been configured, update the MySQL_dm.rar file using the following
command:

RAConfig -path . MySQL_dm.rar 1

RAConfig -u jonas-ra.xml MySQL_dm.rar 2

1 Extraction of jonas-ra.xml of MySQL_dm.rar in the working directory
2 update MySQL_dm.rar with jonas-ra.xml

2.7. Configuring JMS Resource Adapters
JMS Resource adapters can be deployed, either via the jonas.properties file, or via the
JonasAdmin tool, or included in the autoload directory of the resource service.

JMS connections are obtained from a JMS RA, which is configured to identify and access a JMS server.

The JORAM resource adapter archive (joram_ra_for_jonas-{joram.version}.rar)
is provided with the JOnAS distribution. It is located
in the $JONAS_BASE/repositories/maven2-internal/org/objectweb/joram/
joram_ra_for_jonas/{joram.version}/joram_ra_for_jonas-
{joram.version}.rar directory. This file has to be changed if a particular configuration is
needed for JORAM.

By default, the joram.xml file, a deployment plan related to JORAM, is present in the
$JONAS_BASE/deploy directory. This deployment plan is used to deploy JORAM. It declares
among others the JORAM resource adapter archive to deploy.

2.7.1. JORAM Resource Adapter configuration files
The JORAM RA may be seen as the central authority to go through for connecting and using a JORAM
platform. The RA is provided with a default deployment configuration which:

• Starts a collocated JORAM server in non-persistent mode, with id 0 and name s0, on host localhost
and using port 16010; for doing so it relies on both an a3server.xml file located in the
$JONAS_BASE/conf directory and the jonas-ra.xml file located within the RA.

• Creates managed JMS ConnectionFactory instances and binds them with the names CF, QCF, and
TCF.

• Creates administered objects for this server (JMS destinations and non-managed factories) as
described by the joramAdmin.xml, located in the $JONAS_BASE/conf directory; those
objects are bound with the names sampleQueue, sampleTopic, JCF, JQCF, and JTCF.

The default configuration may, of course, be modified.

The JORAM integration into JOnAS is composed of 3 different parts: server, RA, and administration.
Each part contains its own configuration files:

• a3servers.xml is the JORAM platform configuration file, i.e. the server part. The file is located in
the $JONAS_BASE/conf directory.

Configuring a JOnAS instance

60

• ra.xml and jonas-ra.xml are the resource adapter configuration files. They are embedded
in the resource adapter (META-INF directory).

• joramAdmin.xml contains the administration tasks to be performed by the JORAM server such
as the JMS objects creation. It is located in the $JONAS_BASE/conf directory.

2.7.1.1. JORAM server configuration : a3servers.xml

The a3server.xml ($JONAS_BASE/conf/a3server.xml) file describes the JORAM platform,
i.e., the network domain, the used transport protocol, and the reachable JORAM servers. It is used by
a JORAM server at start time. By default, only one collocated JORAM server is defined (s0) based
on the tcp/ip protocol. A distributed configuration example is provided in the how-to document and
other examples are available in JORAM's user guide.

<config>
 <property name="Transaction" value="fr.dyade.aaa.util.NullTransaction"/> 1

 <server id="0" name="S0" hostname="localhost"> 2

 <service class="org.objectweb.joram.mom.proxies.ConnectionManager"
 args="root root"/>
 <service class="org.objectweb.joram.mom.proxies.tcp.TcpProxyService"
 args="16010"/> 3

 </server>
</config>

1 This property means that the non persistent mode for JMS is choosen. In order to use persistent
mode, the value must be changed to "fr.dyade.aaa.util.NTransaction"

2 Here can be set the server id and the host where the server run
3 args specifies the port number the JORAM server is listening on

The above configuration describes a JORAM platform made up of one unique JORAM server (id
0, name s0), running on localhost, listening on port 16010. Those values are taken into account by
the JORAM server when starting. However, they should match the values set in the deployment
descriptor of the RA, otherwise the adapter either will not connect to the JORAM server, or it will
build improper connection factories.

The joram_raconfig command allows to modify these parameters in all the configuration files.

If used in non-collocated mode, joram can be started with the JmsServer command which loads the
$JONAS_BASE/conf/a3server.xml configuration file.

2.7.1.2. Resource Adapter configuration: ra.xml, jonas-ra.xml

The ra.xml file is the standard deployment descriptor for the JORAM adapter and the jonas-
ra.xml file is the JOnAS-specific deployment descriptor for the JORAM adapter. These files set
the central configuration of the adapter, define and set managed connection factories for outbound
communication, and define a listener for inbound communication. jonas-ra.xml contains specific
parameters such as pool parameters or jndi names, but also may redefine the parameters of some
ra.xml files and override their values. Globally, a good way to proceed is to keep the original
ra.xml file with the default values and to customize the configuration only in the jonas-ra.xml
file.

Changing the configuration of the RA requires extracting and editing the deployment descriptor and
updating the archive file. There are several possible ways to do this:

• With the RAConfig command to extract jonas-ra.xml, do the following:

RAConfig -path . joram_for_jonas_ra.rar

Then, to update the archive, do the following:

RAConfig -u jonas-ra.xml joram_for_jonas_ra.rar

Configuring a JOnAS instance

61

• Through the jonasAdmin console (refer to Administration guide for a complete description).

In the jonasAdmin's tree, the Resource Adapter Module node (under the deployment node) contains
a configure tab that allows editing of both the ra.xml file and the jonas-ra.xml file of the undeployed
RA.

• Through the joram_raconfig utility (refer to joram_raconfig description for a complete description).

This tool allows easy modification to the network parameters of the JORAM server in all the
configuration files.

The following properties are related to the central configuration of the adapter; they are set via some
<jonas-config-property> elements:

property name description possible values

CollocatedServer Running mode of the JORAM
server to which the adapter gives
access.

• True: when deploying, the
adapter starts a collocated
JORAM server.

• False: when deploying, the
adapter connects to a remote
JORAM server.

• Nothing (default True value is
then set).

PlatformConfigDir Directory where the
a3servers.xml and
joramAdmin.xml files are
located.

• Any String describing an
absolute path (ex: /myHome/
myJonasRoot/conf).

• Empty String, files will be
searched in $JONAS_BASE/
conf

• Nothing (default empty string
is then set).

PersistentPlatform Persistence mode of the
collocated JORAM server. -
not taken into account if
the JORAM server is set as
non-collocated. - If true, set
the property 'Transaction' to
'fr.dyade.aaa.util.NTransaction'
before launching the JORAM
server. - If false, set
the property 'Transaction' to
'fr.dyade.aaa.util.NullTransaction'
before launching the JORAM
server. - Warning, if the
'Transaction' property is set in
the a3server.xml file, this value
is ignored.

• True: starts a persistent
JORAM server.

• False: starts a non-persistent
JORAM server.

• Nothing (default False value
is then set).

ServerId Identifier of the JORAM server
to start (not taken into account if
the JORAM server is set as non-
collocated).

• Identifier corresponding to the
server to start described in the
a3servers.xml file (ex: 1).

• Nothing (default 0 value is
then set).

Configuring a JOnAS instance

62

ServerName Logical name of the JORAM
server to start.In the collocated
case, this parameter specifies the
storage path of the persistent
mode (absolute or relative path).
If the JORAM server is non-
collocated, it must be set to
the name of the already started
JORAM server (this is necessary
for management purpose).

• Storage path of the persistent
mode for the collocated case
(ex: /tmp/s0).

• Name of the started server as
described in the a3servers.xml
in the non collocated case (ex:
s1)

• Nothing (default s0 name
is then set and the current
directory is used for storing
the persistent data).

AdminFileXML Name of the file describing
the administration tasks to
be performed by the JORAM
server, i.e., JMS destinations to
create, users to create, ... If the
file does not exist, or is not
found, no administration task is
performed.

• Name of the file (ex:
myAdminFile.xml).

• Nothing (default
joramAdmin.xml name is then
set).

HostName Name of the host where the
JORAM server runs, used for
accessing a remote JORAM
server (non-collocated mode),
and for building appropriate
connection factories.

• Any host name (ex: myHost).

• Nothing (default localhost
name is then set).

ServerPort Port the JORAM server is
listening on, used for accessing
a remote JORAM server (non-
collocated mode), and for
building appropriate connection
factories.

• Any port value (ex: 16030).

• Nothing (default 16010 value
is then set).

ConnectingTimer Duration in seconds during
which connecting is attempted
(connecting might take time if
the server is temporarily not
reachable)

• 0 : set for connecting
only once and aborting if
connecting failed (default
value)

• n : duration in seconds

CnxPendingTimer Period in milliseconds between
two ping requests sent by the
client connection to the server;

• 0 means "notimer" (default
value)

• n: duration in milliseconds

TxPendingTimer Duration in seconds during
which a JMS transacted (non
XA) session might be pending;
above that duration the session is
rolled back and closed.

• 0 value means "no timer".

• n: duration in seconds

DeleteDurableSubscription Indicates the durable
Subscriptions must be deleted
when the consumer is closed

• True (previous behaviour)

• False (default value)

The <jonas-connection-definition> elements wrap properties related to the managed connection
factories:

There are three managed connection factories:

Configuring a JOnAS instance

63

• A Queue managed connection factory registered in JNDI with the name QCF

• A Topic managed connection factory registered in JNDI with the name TCF

• A managed connection factory registered in JNDI with the name CF

Here are the properties that can be configured for each managed connection factory:

property name description possible values

jndi-name Name used for binding the
constructed connection factory.

Any name (ex:
myQueueConnectionFactory).
Default values are

• QCF for the Queue managed
connection factory

• TCF for the Topic managed
connection factory

• CF for the managed
connection factory

UserName Default user name that will
be used for opening JMS
connections.

• Any name (ex: myName).

• Nothing (default anonymous
name will be set).

Password Default user password that will
be used for opening JMS
connections.

• Any name (ex: myPass).

• Nothing (default anonymous
password will be set).

Collocated Specifies if the connections
that will be created from the
factory should be TCP or local-
optimized connections

• True (for building local-
optimized connections).

• False (for building TCP
connections).

• Nothing (default TCP mode
will be set).

The <jonas-activationspec> element wraps a property related to inbound messaging:

property name description possible values

jndi-name Binding name of a JORAM
object to be used by 2.1 MDBs.

• Any name (by
default:joramActivationSpec).

The Pooling Tags are the same than those for other RAs:

property name description possible values

pool-init Initial size of the managed
connection pool

• 0 (default value)

• n

pool-min Minimum size of the managed
connection pool.

• 0 (default value)

• n

pool-max Maximum size of the managed
connection pool.

• n

• -1 = unlimited (default value)

Configuring a JOnAS instance

64

pool-max-age-minutes Maximum number of minutes to
keep the managed connection in
the pool.

• 0 = an unlimited amount of
time.

• n in minutes

pstmt-max Maximum number of
PreparedStatements per
managed connection in the pool.
Only needed with the JDBC RA
of JOnAS or another database
vendor's RAR. Value of 0 is
unlimited and -1 disables the
cache.

• 0 = unlimited

• n (default value = 10)

• -1 = cache disabled

pool-max-opentime Identifies the maximum number
of minutes that a managed
connection can be left busy.

• 0 = an unlimited amount of
time (default value).

• n in minutes

pool-max-waiters: identifies the maximum number
of waiters for a managed
connection. Default value is 0.

• 0 (default value)

• n

pool-max-waittime identifies the maximum number
of seconds that a waiter will
wait for a managed connection.
Default value is 0.

• 0 (default value)

• n in seconds

pool-sampling-period: identifies the number of seconds
that will occur between statistics
samplings of the pool. Default is
30 seconds.

• n in seconds (default value =
30s)

2.7.1.3. JMS Applications Configuration

joramAdmin.xml file describes the configuration related to the application. It describes the
administration objects in the JORAM server such as the JMS objects, the users, or the non-managed
factories. In other words, it defines the JORAM objects to be (optionally) created when deploying
the adapter.

In earlier version the joram-admin.cfg was used for this same purpose but it is now deprecated.

The default file provided with JOnAS creates a queue bound with the name sampleQueue, a topic
bound with the name sampleTopic, sets the anonymous user, and creates and binds non-managed
connection factories named JCF, JQCF and JTCF

Note

• All administration tasks are performed by the server connected but may affect remote
JORAM servers to which the adapter is connected through the ServerId attribute.

• If a queue, a topic or a user already exists on the JORAM server (for example, because
the server is in persistent mode and has re-started after a crash, or because the adapter
has been deployed, undeployed and is re-deployed giving access to a remote JORAM
server), it will be retrieved instead of being re-created.

The format of this file is XML. Here are some examples:

• simple example:

<?xml version="1.0"?>

Configuring a JOnAS instance

65

 <JoramAdmin>
 <AdminModule>
 <collocatedConnect name="root" password="root"/>
 </AdminModule>
 <ConnectionFactory
 className="org.objectweb.joram.client.jms.tcp.TcpConnectionFactory">
 <tcp host="localhost"
 port="16010"/>
 <jndi name="JCF"/>
 </ConnectionFactory>
 <ConnectionFactory
 className="org.objectweb.joram.client.jms.tcp.QueueTcpConnectionFactory">
 <tcp host="localhost"
 port="16010"/>
 <jndi name="JQCF"/>
 </ConnectionFactory>
 <ConnectionFactory
 className="org.objectweb.joram.client.jms.tcp.TopicTcpConnectionFactory">
 <tcp host="localhost"
 port="16010"/>
 <jndi name="JTCF"/>
 </ConnectionFactory>
 <User name="anonymous"
 password="anonymous"
 serverId="0"/>
 <Queue name="sampleQueue">
 <freeReader/>
 <freeWriter/>
 <jndi name="sampleQueue"/>
 </Queue>
 <Topic name="sampleTopic">
 <freeReader/>
 <freeWriter/>
 <jndi name="sampleTopic"/>
 </Topic>
 </JoramAdmin>

• For requesting the creation of a new object, simply add the element in the file. For example, to add
a queue 'MyQueue', add the following XML element:

 <Queue name="myQueue">
 <freeReader/>
 <freeWriter/>
 <jndi name="myQueue"/>
 </Queue>

• When the JORAM is not collocated, the AdminModule must be defined as follows:

 <AdminModule>
 <connect host="localhost"
 port="16020"
 name="root"
 password="root"/>
 </AdminModule>

The port number must be set with the server port number (defined in the a3servers.xml and in
the JORAM's RAR configuration ra.xml and jonas-ra.xml files).

• Possible parameters for a queue definition:

 <Queue name=""
 serverId=""
 className=""
 dmq=""
 nbMaxMsg=""
 threshold="">
 <property name="" value=""/>
 <property name="" value=""/>
 <reader user=""/>
 <writer user=""/>
 <freeReader/>
 <freeWriter/>
 <jndi name=""/>
 </Queue>

• Possible parameters for a topic definition:

Configuring a JOnAS instance

66

 <Topic name=""
 parent=""
 serverId=""
 className=""
 dmq="">
 <property name="" value=""/>
 <property name="" value=""/>
 <reader user=""/>
 <writer user=""/>
 <freeReader/>
 <freeWriter/>
 <jndi name=""/>
 </Topic>

• Example of a dead message queue definition:

 <DMQueue name="DMQ"
 serverId="0">
 <reader user="anonymous"/>
 <writer user="anonymous"/>
 <freeReader/>
 <freeWriter/>
 <jndi name="DMQ"/>
 </DMQueue>

• Example of a scheduler queue definition:

 <Destination type="queue"
 serverId="0"
 name="schedulerQueue"
 className="com.scalagent.joram.mom.dest.scheduler.SchedulerQueue">
 <freeReader/>
 <freeWriter/>
 <jndi name="schedulerQueue"/>
 </Destination>

• Example of a clustered queues destination:

 <Cluster>
 <Queue name="queue0"
 serverId="0"
 className="org.objectweb.joram.mom.dest.ClusterQueue">
 <freeReader/>
 <freeWriter/>
 <property name="period" value="10000"/>
 <property name="producThreshold" value="50"/>
 <property name="consumThreshold" value="2"/>
 <property name="autoEvalThreshold" value="false"/>
 <property name="waitAfterClusterReq" value="1000"/>
 <jndi name="queue0"/>
 </Queue>
 <Queue name="queue1"
 serverId="1"
 className="org.objectweb.joram.mom.dest.ClusterQueue">
 <freeReader/>
 <freeWriter/>
 <property name="period" value="10000"/>
 <property name="producThreshold" value="50"/>
 <property name="consumThreshold" value="2"/>
 <property name="autoEvalThreshold" value="false"/>
 <property name="waitAfterClusterReq" value="1000"/>
 <jndi name="queue1"/>
 </Queue>
 <Queue name="queue2"
 serverId="2"
 className="org.objectweb.joram.mom.dest.ClusterQueue">
 <freeReader/>
 <freeWriter/>
 <property name="period" value="10000"/>
 <property name="producThreshold" value="50"/>
 <property name="consumThreshold" value="2"/>
 <property name="autoEvalThreshold" value="false"/>
 <property name="waitAfterClusterReq" value="1000"/>
 <jndi name="queue2"/>
 </Queue>
 <freeReader/>
 <freeWriter/>

Configuring a JOnAS instance

67

 <reader user="user0"/>
 <writer user="user0"/>
 <reader user="user1"/>
 <writer user="user1"/>
 <reader user="user2"/>
 <writer user="user2"/>
 </Cluster>

2.7.1.4. joram_raconfig command

2.7.1.4.1. joram_raconfig

Change the host and port parameters of a given JORAM server in the configuration files.

2.7.1.4.1.1. Options

joram_raconfig [-p port] [-h host] [-s serverId]

-p port Set the listening port of the JORAM server (defaults to 16010).

-h host Set the IP address of the JORAM server (defaults to localhost).

-s serverId Set the server id of the JORAM server (defaults to 0).

2.7.1.4.1.2. Description

The joram_raconfig tool aims to facilitate consistent updates (accross multiple files) for the host and
port parameters of a given JORAM server ID.

JORAM relies on several configuration files: a3servers.xml, joramAdmin.xml and
ra.xml. With joram_raconfig, these configuration files are updated all together and thus the
consistency is ensured.

Modified files:

• $JONAS_BASE/conf/a3servers.xml

• $JONAS_BASE/conf/joramAdmin.xml

• META-INF/ra.xml (in the JORAM resource adapter) is updated.

Resource adapters files are looked up in the following places:

• $JONAS_BASE/repositories/maven2-internal/org/objectweb/joram/
joram_ra_for_jonas/{joram.version}/joram_ra_for_jonas-
{joram.version}.rar

• $JONAS_BASE/deploy/joram_ra_for_jonas.rar

2.7.1.4.1.3. Example

>$ joram_raconfig -h localhost -p 16012 -s 0
Target JORAM Resource Adapter: /home/ ... /joram/joram_ra_for_jonas/5.2.1a/
joram_ra_for_jonas-5.2.1a.rar

2.7.2. JORAM's Resource Adapter tuning

2.7.2.1. ManagedConnection Pool

A pool of ManagedConnection is defined for each factory (connection definition) specified in the
jonas-ra.xml file. See the pool parameters in the Section 2.7.1.2, “Resource Adapter configuration:
ra.xml, jonas-ra.xml” [63].

Configuring a JOnAS instance

68

2.7.2.2. Session/Thread pool in the JORAM RA

The JORAM RA manages a pool of session/thread for each connection and, by default, the maximum
number of parallel sessions is set to 10.

When linked with an message-driven bean, this maximum number of entries in the pool corresponds
to the maximum number of messages that can be processed in parallel per message-driven bean. A
session is released to the pool just after the message processing (onMessage()). When the maximum is
reached, the inquiries for a session creation are blocked until a session becomes available in the pool.

The maxNumberOfWorks property can be set in the message-driven bean standard deployment
descriptor. For example, the code below can be added to limit the number of parallel sessions to 100
(default value is 10).

 <activation-config-property>
 <activation-config-property-name>maxNumberOfWorks</activation-config-property-name>
 <activation-config-property-value>100</activation-config-property-value>
 </activation-config-property>

As this parameter set the max number of messages that can be treated simultaneously, the max-cache-
size must be set accordingly in the specific deployment descriptor.

2.7.3. Undeploying and Redeploying a JORAM Adapter
Undeploying a JORAM adapter either stops the collocated JORAM server or disconnects from a
remote JORAM server. It is then possible to deploy the same adapter again. If set for running a
collocated server, it will re-start it. If the running mode is persistent, then the server will be retrieved
in its pre-undeployment state (with the existing destinations, users, and possibly messages). If set for
connecting to a remote server, the adapter will reconnect and access the destinations it previously
created.

In the collocated persistent case, if the intent is to start a brand new JORAM server, its persistence
directory should be removed. This directory is located in JOnAS' running directory and has the same
name as the JORAM server (for example, s0/ for server "s0").

2.8. Configuring JDBC DataSources
This section describes how to configure the Datasources for connecting application to databases when
the dbm service is used.

2.8.1. Configuring DataSources
For both container-managed or bean-managed persistence, JOnAS makes use of relational storage
systems through the JDBC interface. JDBC connections are obtained from an object, the
DataSource, provided at the application server level. The DataSource interface is defined in the
JDBC standard extensions.

A DataSource object identifies a database and a means to access it via JDBC (a JDBC driver).
An application server may request access to several databases and thus provide the corresponding
DataSource objects that will be registered in JNDI registry.

This section explains how DataSource objects can be defined and configured in the JOnAS server.

JOnAS provides a generic driver-wrapper that emulates the XADataSource interface on a regular
JDBC driver. It is important to note that this driver-wrapper does not ensure a real two-phase commit
for distributed database transactions.

Neither the EJB specification nor the Java EE specification describe how to define DataSource
objects so that they are available to a Java EE platform. Therefore, this document, which describes
how to define and configure DataSource objects, is specific to JOnAS. However, the way to use

Configuring a JOnAS instance

69

these DataSource objects in the Application Component methods is standard, that is, by using the
resource manager connection factory references (refer to the example in the section Writing database
access operations [ejb2_programmer_guide.html#ejb2.bmp] of the Developing Entity Bean Guide
[ejb2_programmer_guide.html#ejb2.entity]).

A DataSource object should be defined in a file called <DataSource name>.properties (for
example Oracle1.properties for an Oracle DataSource or Postgres.properties for an PostgreSQL
DataSource.These files must be located in $JONAS_BASE/conf directory.

In the jonas.properties file, to define a DataSource "Oracle1.properties" add the name
"Oracle1" to the line onas.service.dbm.datasources, as follows:

jonas.service.dbm.datasources Oracle1, Sybase, PostgreSQL

The property file defining a DataSource may contain two types of information:

• connection properties

• JDBC Connection Pool properties

2.8.1.1. connection properties

property name Description

datasource.name JNDI name of the DataSource

datasource.url The JDBC database URL :
jdbc:<database_vendor_subprotocol>:...

datasource.classname Name of the class implementing the JDBC driver

datasource.username Database user name

datasource.password Database user password

datasource.isolationLevel Database isolation level for transactions. Possible
values are:

• none,

• serializable,

• read_committed,

• read_uncommitted,

• repeatable_read

The default depends on the database used.

datasource.mapper JORM database mapper (for possible
values see here) [http://jorm.objectweb.org/doc/
mappers.html]

Note

If this datasource is used as a persistence unit, the persistence configuration defined in the
persistence.xml file must be coherent to those properties, such as the datasource
name and the dialect.

2.8.1.2. Connection Pool properties

Each Datasource is implemented as a connection manager and manages a pool of JDBC
connections.

ejb2_programmer_guide.html#ejb2.bmp
ejb2_programmer_guide.html#ejb2.bmp
ejb2_programmer_guide.html#ejb2.bmp
ejb2_programmer_guide.html#ejb2.entity
ejb2_programmer_guide.html#ejb2.entity
http://jorm.objectweb.org/doc/mappers.html
http://jorm.objectweb.org/doc/mappers.html
http://jorm.objectweb.org/doc/mappers.html

Configuring a JOnAS instance

70

The pool can be configured via some additional properties described in the following table.

All these settings have default values and are not required. All these attributes can be reconfigured
when JOnAS is running, with the console JonasAdmin.

property Description Default value

jdbc.connchecklevel JDBC connection checking
level:

• 0 : no check

• 1: check connection still open

• 2: call the test statement
before reusing a connection
from the pool

1

jdbc.connteststmt test statement in case
jdbc.connchecklevel = 2.

select 1

jdbc.connmaxage nb of minutes a connection can
be kept in the pool. After this
time, the connection will be
closed, if minconpool limit has
not been reached.

1440 mn (= 1 day)

jdbc.maxopentime Maximum time (in mn) a
connection can be left busy. If
the caller has not issued a close()
during this time, the connection
will be closed automatically.

1440 mn (= 1 day)

jdbc.minconpool Minimum number of
connections in the pool. Setting
a positive value here ensures that
the pool size will not go below
this limit during the datasource
lifetime.

0

jdbc.maxconpool Maximum number of
connections in the pool. Limiting
the max pool size avoids errors
from the database.

no limit

jdbc.samplingperiod Sampling period for JDBC
monitoring. nb of seconds
between 2 measures.

60 sec

jdbc.maxwaittime Maximum time (in seconds) to
wait for a connection in case of
shortage. This is valid only if
maxconpool has been set.

10 sec

jdbc.maxwaiters Maximum of concurrent waiters
for a JDBC Connection. This
is valid only if maxconpool has
been set.

1000

jdbc.pstmtmax Maximum number of prepared
statements cached in a
Connection. Setting this to a
bigger value (120 for example)
will lead to better performance,
but will use more memory. The

12

Configuring a JOnAS instance

71

recommendation is to set this
value to the number of different
queries that are used the most
often. This is to be tuned by
administrators.

When a user requests a jdbc connection, the dbm connection manager first checks to see if a connection
is already open for its transaction. If not, it tries to get a free connection from the free list. If there
are no more connections available, the dbm connection manager creates a new jdbc connection (if
jdbc.maxconpool is not reached).

If it cannot create new connections, the user must wait (if jdbc.maxwaiters is not reached) until a
connection is released. After a limited time (jdbc.maxwaittime), the getConnection returns an
exception.

When the user calls close() on its connection, it is put back in the free list.

Many statistics are computed (every jdbc.samplingperiod seconds) and can be viewed by JonasAdmin.
This is useful for tuning these parameters and for seeing the server load at any time.

When a connection has been open for too long a time (jdbc.connmaxage), the pool will try to release it
from the freelist. However, the dbm connection manager always tries to keep open at least the number
of connections specified in jdbc.minconpool.

When the user has forgotten to close a jdbc connection, the system can automatically close it, after
jdbc.maxopentime minutes. Note that if the user tries to use this connection later, thinking it is still
open, it will return an exception (socket closed).

When a connection is reused from the freelist, it is possible to verify that it is still valid. This is
configured in jdbc.connchecklevel. The maximum level is to try a dummy statement on the connection
before returning it to the caller. This statement is configured in jdbc.connteststmt

2.8.1.3. DataSource example:

Here is the template for an Oracle dataSource.properties file that can be found in $JONAS_ROOT/
conf:

###################### Oracle DataSource configuration example
#

#####
DataSource configuration
#
datasource.name jdbc_1
datasource.url jdbc:oracle:thin:@<your-hostname>:1521:<your-db>
datasource.classname oracle.jdbc.driver.OracleDriver
datasource.username <your-username>
datasource.password <user-password>
datasource.mapper rdb.oracle

#####
ConnectionManager configuration
#

JDBC connection checking level.
0 = no special checking
1 = check physical connection is still open before reusing it
2 = try every connection before reusing it
jdbc.connchecklevel 0

Max age for jdbc connections
nb of minutes a connection can be kept in the pool
jdbc.connmaxage 1440

Maximum time (in mn) a connection can be left busy.
If the caller has not issued a close() during this time, the connection

Configuring a JOnAS instance

72

will be closed automatically.
jdbc.maxopentime 60

Test statement
jdbc.connteststmt select * from dual

JDBC Connection Pool size.
Limiting the max pool size avoids errors from database.
jdbc.minconpool 10
jdbc.maxconpool 30

Sampling period for JDBC monitoring :
nb of seconds between 2 measures.
jdbc.samplingperiod 30

Maximum time (in seconds) to wait for a connection in case of shortage.
This may occur only when maxconpool is reached.
jdbc.maxwaittime 5

Maximum of concurrent waiters for a JDBC Connection
This may occur only when maxconpool is reached.
jdbc.maxwaiters 100

73

Chapter 3. EasyBeans Server
Configuration File
3.1. Introduction

EasyBeans is configured with the help of an easy-to-understand XML configuration file.

The following is an example of an EasyBeans XML configuration file:

<?xml version="1.0" encoding="UTF-8"?>
<easybeans xmlns="http://org.ow2.easybeans.server">

 <!-- No infinite loop (daemon managed by WebContainer): wait="false"
 Enable MBeans: mbeans="true"
 No EasyBeans naming, use WebContainer naming: naming="false"
 Use EasyBeans JACC provider: jacc="true"
 Use EasyBeans file monitoring to detect archives: scanning="true"
 Use EasyBeans JMX Connector: connector="true"
 Enable Deployer and J2EEServer MBeans: deployer="true" & j2eeserver="true"
 -->
 <config
 wait="false"
 mbeans="true"
 naming="false"
 jacc="true"
 scanning="true"
 connector="true"
 deployer="true"
 j2eeserver="true" />

 <!-- Define components that will be started at runtime -->
 <components>
 <!-- RMI/JRMP will be used as protocol layer -->
 <rmi>
 <protocol name="jrmp" port="1099" hostname="localhost" />
 </rmi>

 <!-- Start a transaction service -->
 <tm />

 <!-- Start a JMS provider -->
 <jms port="16030" hostname="localhost" />

 <!-- Creates an embedded HSQLDB database -->
 <hsqldb port="9001" dbName="jdbc_1">
 <user name="easybeans" password="easybeans" />
 </hsqldb>

 <!-- Add mail factories -->
 <mail>
 <!-- Authentication ?
 <auth name="test" password="test" />
 -->
 <session name="javax.mail.Session factory example" jndiName="mailSession_1">
 <!-- Example of properties -->
 <property name="mail.debug" value="false" />
 </session>

 <mimepart name="javax.mail.internet.MimePartDataSource factory example"
 jndiName="mailMimePartDS_1">
 <subject>How are you ?</subject>
 <email type="to">john.doe@example.org</email>
 <email type="cc">jane.doe@example.org</email>
 <!-- Example of properties -->
 <property name="mail.debug" value="false" />
 </mimepart>

 </mail>

 <!-- Creates a JDBC pool with jdbc_1 JNDI name -->
 <jdbcpool jndiName="jdbc_1" username="easybeans"
 password="easybeans" url="jdbc:hsqldb:hsql://localhost:9001/jdbc_1"
 driver="org.hsqldb.jdbcDriver" />

EasyBeans Server Configuration File

74

 <!-- Start smartclient server with a link to the rmi component-->
 <smart-server port="2503" rmi="#rmi" />

 <!-- JNDI Resolver -->
 <jndi-resolver />

 <!-- JMX component -->
 <jmx />

 <!-- Statistic component -->
 <statistic event="#event" jmx="#jmx" />
 </components>
</easybeans>

By default, an easybeans-default.xml file is used. To change the default configuration, the
user must provide a file named easybeans.xml, which is located at classloader/CLASSPATH.

Note

The namespace used is http://org.ow2.easybeans.server.

3.2. Configuration
Each element defined inside the <components> element is a component.

Note that some elements are required only for the standalone mode. JMS, RMI, HSQL, and JDBC
pools are configured through JOnAS server when EasyBeans runs inside JOnAS.

3.2.1. RMI Component
The RMI configuration is done using the <rmi> element.

To run EasyBeans with multiple protocols, the <protocol> element can be added more than once.

The hostname and port attributes are configurable.

Protocols could be "jrmp, jeremie, iiop, cmi". The default is jrmp.

Note

Some protocols may require libraries that are not packaged by default in EasyBeans.

3.2.2. Transaction Component
The Transaction Component is defined by the <tm> element.

A timeout attribute, which is the transaction timeout (in seconds), can be defined on this element.
The default is 60 seconds.

The implementation provided by the JOTM [http://jotm.objectweb.org] objectweb project is the
default implementation.

3.2.3. JMS Component
The JMS component is used for JMS Message Driven Beans. Attributes are the port number and the
hostname.

Also, the workmanager settings can be defined: minThreads, maxThreads and threadTimeout. The
values are printed at the EasyBeans startup.

The default implementation is the implementation provided by the JORAM [http://
joram.objectweb.org] objectweb project.

http://jotm.objectweb.org
http://jotm.objectweb.org
http://joram.objectweb.org
http://joram.objectweb.org
http://joram.objectweb.org

EasyBeans Server Configuration File

75

3.2.4. HSQL Database
EasyBeans can run an embedded database. Available attributes are the port number and the database
name. The <hsqldb> may be duplicated in order to run several HSQLDB instances.

Users are defined through the <user> element.

3.2.5. JDBC Pool
This component allows the JDBC datasource to be bound into JNDI. The jndi name used is provided
by the jndiName attribute.

Required attributes are username, password, url and driver.

Optional attributes are poolMin, poolMax and pstmtMax. This component provides the option
to set the minimum size of the pool, the maximum size, and the size of the prepared statement cache.

3.2.6. Mail component
Mails can be sent by using the mail component that provides either Session or MimePartDataSource
factories.

3.2.7. SmartServer Component
This component is used by the Smart JNDI factory on the client side. This allows the client to download
missing classes. The client can be run without a big jar file that provides all the classes. Classes are
loaded on demand.

Note

Refer to the Chapter titled, Smart JNDI Factory, for more information about this feature.

3.3. Advanced Configuration
This configuration file can be extended to create and set properties on other classes.

3.3.1. Mapping File
A mapping file named easybeans-mapping.xml provides the information that rmi is the
CarolComponent, tm is the JOTM component, and jms is the Joram component. This file is located
in the org.objectweb.easybeans.server package.

The following is an extract of the easybeans-mapping.xml file.

Note

The mapping file is using a schema available at http://easybeans.ow2.org/xml/
ns/xmlconfig/xmlconfig-mapping_10.xsd [http://easybeans.ow2.org/xml/ns/xmlconfig/
xmlconfig-mapping_1_0.xsd]

<?xml version="1.0" encoding="UTF-8"?>
 <xmlconfig-mapping xmlns="http://easybeans.ow2.org/xml/ns/xmlconfig"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://easybeans.ow2.org/xml/ns/xmlconfig
 http://easybeans.ow2.org/xml/ns/xmlconfig/xmlconfig-
mapping_1_0.xsd">

 <class name="org.ow2.easybeans.server.ServerConfig" alias="config">
 <attribute name="shouldWait" alias="wait" />
 <attribute name="useMBeans" alias="mbeans" />
 <attribute name="useNaming" alias="naming" />
 <attribute name="initJACC" alias="jacc" />

http://easybeans.ow2.org/xml/ns/xmlconfig/xmlconfig-mapping_1_0.xsd
http://easybeans.ow2.org/xml/ns/xmlconfig/xmlconfig-mapping_1_0.xsd
http://easybeans.ow2.org/xml/ns/xmlconfig/xmlconfig-mapping_1_0.xsd
http://easybeans.ow2.org/xml/ns/xmlconfig/xmlconfig-mapping_1_0.xsd

EasyBeans Server Configuration File

76

 <attribute name="directoryScanningEnabled" alias="scanning" />
 <attribute name="startJMXConnector" alias="connector" />
 <attribute name="registerDeployerMBean" alias="deployer" />
 <attribute name="registerJ2EEServerMBean" alias="j2eeserver" />
 <attribute name="description" />
 </class>

 <class name="org.ow2.easybeans.component.Components"
 alias="components" />

 <class name="org.ow2.easybeans.component.util.Property"
 alias="property" />

 <package name="org.ow2.easybeans.component.carol">
 <class name="CarolComponent" alias="rmi" />
 <class name="Protocol" alias="protocol">
 <attribute name="portNumber" alias="port" />
 </class>
 </package>

 <class name="org.ow2.easybeans.component.cmi.CmiComponent" alias="cmi">
 <attribute name="serverConfig" alias="config" />
 <attribute name="eventComponent" alias="event" />
 </class>

 <class
 name="org.ow2.easybeans.component.smartclient.server.SmartClientEndPointComponent"
 alias="smart-server">
 <attribute name="portNumber" alias="port" />
 <attribute name="registryComponent" alias="rmi" />
 </class>

 <class name="org.ow2.easybeans.component.jotm.JOTMComponent"
 alias="tm" />

 <class name="org.ow2.easybeans.component.joram.JoramComponent" alias="jms">
 <attribute name="topic" isList="true" getter="getTopics" setter="setTopics"
 element="true"/>
 </class>

 <class
 name="org.ow2.easybeans.component.jdbcpool.JDBCPoolComponent"
 alias="jdbcpool" />

 <class
 name="org.ow2.easybeans.component.remotejndiresolver.RemoteJNDIResolverComponent"
 alias="jndi-resolver">
 </class>

 <package name="org.ow2.easybeans.component.hsqldb">
 <class name="HSQLDBComponent" alias="hsqldb">
 <attribute name="databaseName" alias="dbName" />
 <attribute name="portNumber" alias="port" />
 </class>
 <class name="User" alias="user">
 <attribute name="userName" alias="name" />
 </class>
 </package>

 <package name="org.ow2.easybeans.component.quartz">
 <class name="QuartzComponent" alias="timer" />
 </package>

 <package name="org.ow2.easybeans.component.mail">
 <class name="MailComponent" alias="mail" />
 <class name="Session" alias="session">
 <attribute name="JNDIName" alias="jndiName" />
 </class>
 <class name="MimePart" alias="mimepart">
 <attribute name="subject" element="true" />
 <attribute name="JNDIName" alias="jndiName" />
 </class>
 <class name="MailAddress" alias="email" element-attribute="name" />
 <class name="Auth" alias="auth">
 <attribute name="username" alias="name" />
 </class>
 </package>

 <class name="org.ow2.easybeans.component.event.EventComponent" alias="event">
 <attribute name="eventService" alias="event-service" optional="true" />
 </class>

 <class name="org.ow2.easybeans.component.jmx.JmxComponent" alias="jmx">

EasyBeans Server Configuration File

77

 <attribute name="commonsModelerExtService" alias="modeler-service" optional="true" />
 </class>

 <class name="org.ow2.easybeans.component.statistic.StatisticComponent"
 alias="statistic">
 <attribute name="eventComponent" alias="event" />
 <attribute name="jmxComponent" alias="jmx" />
 </class>

 <package name="org.ow2.easybeans.component.depmonitor">
 <class name="DepMonitorComponent" alias="depmonitor">
 </class>
 <class name="ScanningMonitor" alias="scanning">
 <attribute name="waitTime" alias="period" />
 </class>
 <class name="LoadOnStartupMonitor" alias="loadOnStartup">
 </class>
 </package>

</xmlconfig-mapping>

Note

This mapping file is referenced by the easybeans configuration file using the XML
namespace : xmlns="http://org.ow2.easybeans.server".

Each element configured within this namespace will use the mapping done in the
org.ow2.easybeans.server package.

Users can define their own mapping by providing a file in a package. The name of the the file must
be easybeans-mapping.xml or element-mapping.xml.

Example: For the element <easybeans xmlns="http://
org.ow2.easybeans.server">, the resource searched in the classloader is org/ow2/
easybeans/server/easybeans-mapping.xml. And for an element <pool:max>2</
pool:max> with xmlns:pool="http://org.ow2.util.pool.impl", the resource searched will be org/ow2/
util/pool/impl/easybeans-mapping.xml or org/ow2/util/pool/impl/pool-mapping.xml.

3.3.2. Other Configuration Files
EasyBeans can be configured through other configuration files as it uses a POJO configuration. If done
this way, it can be configured using the Spring Framework component or other frameworks/tools.

78

Chapter 4. Glossary

Glossary
Axis [http://ws.apache.org/
axis/]

Java platform for creating and deploying web services
applications

CAROL [http://
carol.objectweb.org/]

Library allowing the use of different RMI implementations.

CMI (Clustered Method Invocation) is the JOnAS cluster protocol for
high availability, load-balancing and fail-over

EasyBeans [http://
www.easybeans.net/xwiki/bin/
view/Main/]

An Open source and lightweight EJB3 container that can be
embedded in JOnAS and other application servers. It is an OW2
project.

EIS Enterprise Information Systems

EJB Enterprise JavaBeans technology is the server-side component
architecture for the Java Platform, Enterprise Edition (Java
EE). EJB technology enables rapid development of distributed,
transactional, secure and portable applications based on Java
technology.

Hibernate A Java-based object-relational mapping and persistence
framework.

IIOP Inter-operable Internet Object Protocol. It is the CORBA RPC
standard protocol on TCP/IP.

JAAS The Java Authentication and Authorization Service is a set of
APIs that enable services to authenticate and enforces access
controls upon users.

JACC Java Authorization Contract for Containers

Jakarta Commons Logging
[http://jakarta.apache.org/
commons/logging/]

Wrapper around a variety of logging API implementations.

Java EE Java Platform, Enterprise Edition. A standard for developing
portable, robust, scalable and secure server-side Java applications.

JAXP Java API for XML Processing. Provides the validating and
parsing capabilities for XML documents.

JAXR Java API for XML Registries. Defines a standard API for Java
platform applications to access and programmatically interact
with different kinds of XML-based metadata registries.

JAX-RPC Java APIs for XML based RPC.

JAX-WS Java API for XML-based Web Services. A Java programming
language API for creating web services.

J2CA J2EE Connector Architecture is a standard for facilitating the
integration of application servers with heterogeneous Enterprise
Information Systems (EISs).

http://ws.apache.org/axis/
http://ws.apache.org/axis/
http://ws.apache.org/axis/
http://carol.objectweb.org/
http://carol.objectweb.org/
http://carol.objectweb.org/
http://www.easybeans.net/xwiki/bin/view/Main/
http://www.easybeans.net/xwiki/bin/view/Main/
http://www.easybeans.net/xwiki/bin/view/Main/
http://www.easybeans.net/xwiki/bin/view/Main/
http://jakarta.apache.org/commons/logging/
http://jakarta.apache.org/commons/logging/
http://jakarta.apache.org/commons/logging/

Glossary

79

J2EE Java 2 Platform, Enterprise Edition. A standard for developing
portable, robust, scalable and secure server-side Java applications
up to version 1.5 of the Java Platform.

JDBC Java Database Connectivity. The JDBC API provides a call-level
API for SQL-based database access.

JDK The Java Development Kit is set of Java tools (compiler, jvm,
library ...) for developing Java programs.

JDO The Java Data Objects API is a standard interface-based Java
model abstraction for persistence.

Jetty [http://
www.mortbay.org/]

A pure java open-source, standards-based, web server
implementation.

JGroups [http://
www.jgroups.org/
javagroupsnew/docs/
index.html]

A toolkit for reliable multicast communication.

JMS Java Message Service is a Java Message Oriented Middleware
(MOM) API.

JMX Java Management Extensions. A Java technology that supplies
tools for managing and monitoring applications.

JNDI Java Naming Directory Interface. A standard API/SPI for the Java
EE naming interface.

JORAM [http://
joram.objectweb.org/]

The Java Open Reliable Asynchronous Messaging is an open
source implementation of the JMS API built on top of
the ScalAgent [http://www.scalagent.com/] distributed agent
technology and hosted by OW2.

JORM [http://
jorm.objectweb.org/]

Java Object Repository Mapping is an OW2 project that provides
an adaptable persistence service.

JOTM [http://
jotm.objectweb.org/]

Java Open reliable Transaction Manager is an open source
implementation of the JTA APIs hosted by OW2.

JPA Java Persistence API. A Simpler Programming Model for Entity
Persistence.

JSF JavaServer Faces is a technology that simplifies building user
interfaces for JavaServer applications.

JSP JavaServer Pages is a technology that provides a simplified, fast
way to create dynamic web content.

JSTL JavaServer Pages Standard Tag Library. An extension to the JSP
specification that adds a tag library of JSP tags for common tasks,
such as, XML data processing, conditional execution, loops and
internationalization.

JTA Java Transaction API. Standard Java interfaces between the
transaction manager and the parties involved in a distributed
transaction system: the resource manager, the application server,
and the transactional applications.

JRE Java Runtime Environment.

http://www.mortbay.org/
http://www.mortbay.org/
http://www.mortbay.org/
http://www.jgroups.org/javagroupsnew/docs/index.html
http://www.jgroups.org/javagroupsnew/docs/index.html
http://www.jgroups.org/javagroupsnew/docs/index.html
http://www.jgroups.org/javagroupsnew/docs/index.html
http://www.jgroups.org/javagroupsnew/docs/index.html
http://joram.objectweb.org/
http://joram.objectweb.org/
http://joram.objectweb.org/
http://www.scalagent.com/
http://www.scalagent.com/
http://jorm.objectweb.org/
http://jorm.objectweb.org/
http://jorm.objectweb.org/
http://jotm.objectweb.org/
http://jotm.objectweb.org/
http://jotm.objectweb.org/

Glossary

80

JRMP Java Remote Method Protocol is a Java RMI standard protocol.

JVM The Java Virtual Machine.

JWSDL Java APIs for WSDL. Provides a standard set of Java APIs
for representing, manipulating, reading and writing WSDL
(Web Services Description Language) documents, including an
extension mechanism for WSDL extensibility.

Log4j [http://
logging.apache.org/log4j/docs/
index.html]

A Java-based logging utility from the Apache Software
Foundation. It is used primarily as a debugging tool.

Monolog [http://
monolog.objectweb.org/
index.html]

The OW2 solution for logging.

MX4J [http://
mx4j.sourceforge.net/]

An Open Source implementation of the Java Management
Extensions (JMX) and of the JMX Remote API (JSR 160)
specifications.

P6Spy [http://
www.p6spy.com/]

An open source Java tool that intercepts and logs all database
statements that use JDBC.

RMI Remote Method Invocation. This is the java standard specification
for RPC technology.

RPC Remote Procedure Call is a technology that allows a subroutine
or procedure to execute in another address space.

SAAJ SOAP with Attachments API for Java. Provides a standard way
to send XML documents over the Internet from the Java platform.

Speedo [http://
speedo.objectweb.org/]

An open source implementation of the JDO 1.0.1 specification
hosted by OW2.

Struts [http://
struts.apache.org/]

Apache Struts is an open-source framework for developing
Java EE web applications. It uses and extends the Java Servlet
API to encourage developers to adopt the model-view-controller
architectural pattern.

Tomcat [http://
tomcat.apache.org/]

Apache Tomcat is the servlet container that is used in the official
Reference Implementation for the Java Servlet and JavaServer
Pages.

Velocity [http://
velocity.apache.org/engine/
index.html]

The Apache Velocity Engine is a free open-source templating
engine.

http://logging.apache.org/log4j/docs/index.html
http://logging.apache.org/log4j/docs/index.html
http://logging.apache.org/log4j/docs/index.html
http://logging.apache.org/log4j/docs/index.html
http://monolog.objectweb.org/index.html
http://monolog.objectweb.org/index.html
http://monolog.objectweb.org/index.html
http://monolog.objectweb.org/index.html
http://mx4j.sourceforge.net/
http://mx4j.sourceforge.net/
http://mx4j.sourceforge.net/
http://www.p6spy.com/
http://www.p6spy.com/
http://www.p6spy.com/
http://speedo.objectweb.org/
http://speedo.objectweb.org/
http://speedo.objectweb.org/
http://struts.apache.org/
http://struts.apache.org/
http://struts.apache.org/
http://tomcat.apache.org/
http://tomcat.apache.org/
http://tomcat.apache.org/
http://velocity.apache.org/engine/index.html
http://velocity.apache.org/engine/index.html
http://velocity.apache.org/engine/index.html
http://velocity.apache.org/engine/index.html

	JOnAS 5 Configuration guide
	Table of Contents
	Chapter 1. Introduction
	1.1. Configuring JOnAS
	1.2. Terminology
	1.2.1. Server or JOnAS instance
	1.2.2. Service
	1.2.3. Container
	1.2.4. Domain
	1.2.5. Master server
	1.2.6. Cluster

	Chapter 2. Configuring a JOnAS instance
	2.1. Configuring JOnAS Environment
	2.1.1. JONAS_ROOT structure
	2.1.2. JONAS_BASE structure
	2.1.3. JONAS_BASE creation
	2.1.4. JONAS_BASE/conf description
	2.1.5. Server and services configuration
	2.1.5.1. Global properties
	2.1.5.2. List of JOnAS services
	2.1.5.3. Service startup policies
	2.1.5.4. Customizing services
	2.1.5.5. Development vs Production mode
	2.1.5.5.1. Development mode
	2.1.5.5.2. Production mode

	2.2. Configuring the communication protocol and JNDI
	2.2.1. Choosing the Protocol
	2.2.1.1. configuring jrmp protocol
	2.2.1.2. configuring RMI/IIOP protocol
	2.2.1.3. configuring irmi protocol
	2.2.1.4. enabling clustering of RMI objects
	2.2.1.5. multi protocol configuration

	2.3. Configuring the logging System
	2.3.1. Monolog
	2.3.2. trace.properties syntax
	2.3.3. default trace.properties file
	2.3.4. Tips for setting loggers for JOnAS
	2.3.5. Logging with particular log systems
	2.3.5.1. java logging API
	2.3.5.2. Jakarta commons logging
	2.3.5.3. log4j

	2.4. Configuring JOnAS Services
	2.4.1. cmi service configuration
	2.4.1.1. Server mode configuration
	2.4.1.2. Client mode configuration

	2.4.2. db service configuration
	2.4.3. depmonitor service configuration
	2.4.4. dbm service configuration
	2.4.4.1. Datasource.properties files

	2.4.5. discovery service configuration
	2.4.5.1. Configuration for IP multicast based implementation
	2.4.5.2. Configuration for JGroups based implementation
	2.4.5.3. Cluster deamon configuration for discovery

	2.4.6. ear service configuration
	2.4.7. ejb2 Service configuration
	2.4.8. ejb3 service configuration
	2.4.9. ha service configuration
	2.4.10. jaxrpc service configuration
	2.4.11. jaxws service configuration
	2.4.12. jmx service configuration
	2.4.13. jtm service configuration
	2.4.14. mail service configuration
	2.4.14.1. Configuring Session mail factory
	2.4.14.2. Configuring MimePartDataSource mail factory
	2.4.14.3. Configuring a mail factory

	2.4.15. registry service configuration
	2.4.16. resource service configuration
	2.4.17. security service configuration
	2.4.18. smartclient service configuration
	2.4.19. versioning service configuration
	2.4.19.1. About the versioning service
	2.4.19.2. Focus: versioned Web Applications
	2.4.19.3. Focus: versioned EJBs

	2.4.20. wc service configuration
	2.4.21. web service configuration
	2.4.22. wm service configuration
	2.4.23. wsdl-publisher service configuration
	2.4.23.1. File WSDLPublisher
	2.4.23.2. JAXR WSDLPublisher

	2.5. Configuring Security
	2.5.1. jonas-realm.xml
	2.5.1.1. Memory realm
	2.5.1.2. database realm
	2.5.1.3. LDAP realm

	2.5.2. Servlet Authentication
	2.5.2.1. Authentication with User/password and Tomcat 6
	2.5.2.2. Authentication with certificate and Tomcat 6
	2.5.2.3. Servlet Authentication with User/password and Jetty 6.x
	2.5.2.4. Authentication with certificate and Jetty 6.x

	2.5.3. Client container Authentication
	2.5.4. JAAS configuration
	2.5.4.1. Default JAAS configuration
	2.5.4.2. JOnAS LoginModules

	2.6. Configuring JDBC Resource Adapters
	2.6.1. Generic JDBC Resource Adapters
	2.6.2. Specific JDBC Resource Adapter
	2.6.2.1. Defining the JOnAS Connector Deployment Descriptor: jonas-ra.xml
	2.6.2.2. Understanding pooling tags:

	2.6.3. Examples of Specific JDBC Resource Adapter
	2.6.3.1. Oracle JDBC resource adapter (Driver)
	2.6.3.2. PostgreSQL JDBC resource adapter (Driver)
	2.6.3.3. Oracle JDBC resource adapter (XADataSource)

	2.6.4. Tracing SQL Requests through P6Spy
	2.6.5. Migration from dbm service to the JDBC RA

	2.7. Configuring JMS Resource Adapters
	2.7.1. JORAM Resource Adapter configuration files
	2.7.1.1. JORAM server configuration : a3servers.xml
	2.7.1.2. Resource Adapter configuration: ra.xml, jonas-ra.xml
	2.7.1.3. JMS Applications Configuration
	2.7.1.4. joram_raconfig command
	2.7.1.4.1. joram_raconfig
	2.7.1.4.1.1. Options
	2.7.1.4.1.2. Description
	2.7.1.4.1.3. Example

	2.7.2. JORAM's Resource Adapter tuning
	2.7.2.1. ManagedConnection Pool
	2.7.2.2. Session/Thread pool in the JORAM RA

	2.7.3. Undeploying and Redeploying a JORAM Adapter

	2.8. Configuring JDBC DataSources
	2.8.1. Configuring DataSources
	2.8.1.1. connection properties
	2.8.1.2. Connection Pool properties
	2.8.1.3. DataSource example:

	Chapter 3. EasyBeans Server Configuration File
	3.1. Introduction
	3.2. Configuration
	3.2.1. RMI Component
	3.2.2. Transaction Component
	3.2.3. JMS Component
	3.2.4. HSQL Database
	3.2.5. JDBC Pool
	3.2.6. Mail component
	3.2.7. SmartServer Component

	3.3. Advanced Configuration
	3.3.1. Mapping File
	3.3.2. Other Configuration Files

	Chapter 4. Glossary
	Glossary

